user:rolf001
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| user:rolf001 [2020/06/30 16:02] – [Rolf Becker (rolf001) - Public Page] rolf001 | user:rolf001 [2023/01/05 14:38] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ====== Rolf Becker (rolf001) - Public Page ====== | ====== Rolf Becker (rolf001) - Public Page ====== | ||
| - | Please go to my report under **[[amc2020: | ||
| - | [[amc2020: | ||
| - | < | ||
| - | <svg width=" | ||
| - | <circle cx=" | ||
| - | </ | ||
| - | </ | ||
| - | ===== Introduction ===== | ||
| - | Railways induce heavy vibrations on nearby structures. Continuous monitoring is paramount to assess the structural integrity.\\ | ||
| - | Therefore ... | ||
| - | ===== Methods and Materials ===== | ||
| - | ==== Arduino UNO R3 ==== | + | ===== Royal Eijkelkamp |
| - | {{https://store-cdn.arduino.cc/ | + | [[private:user: |
| - | ==== Math of Oscillation ==== | ||
| - | We assume that an attenuated harmonic oscillation $A(t)$ can be described as: | ||
| - | $$ | ||
| - | A(t) = A_0 e^{-t/t_0} \sin(\omega t + \phi) \; t\ge0 | ||
| - | $$ | ||
| - | $$ | + | ------- |
| - | A(t) = A_0 e^{-t \over t_0} \sin(\omega t + \phi) \; t\ge0 | + | |
| - | $$ | + | |
| - | $$ | ||
| - | A(t) = A_0 e^{\frac{-t}{t_0}} \sin(\omega t + \phi) \; t\ge0 | ||
| - | $$ | ||
| + | My [[: | ||
| - | ===== Results ===== | ||
| - | |||
| - | ===== Discussion ===== | ||
| - | |||
| - | ===== Outlook ===== | ||
| - | |||
| - | https:// | ||
| - | |||
| - | ===== A nice Video ===== | ||
| - | |||
| - | {{youtube> | ||
| - | |||
| - | |||
| - | {{youtube> | ||
| - | |||
| - | |||
| - | [[amc2020: | ||
user/rolf001.1593525760.txt.gz · Last modified: 2023/01/05 14:38 (external edit)