2026/01/14 03:13 1/22 Advanced Chicken House

Advanced Chicken House

Written by Jiahao Chen 20537, Hoi-Fung Sam 30875, Jianhua Wu 20608

1.Introduction

Aim of the project:

In this project, we are going to make a house for chickens in order for scientists to study their living
habits. The basic idea of this chickens’ house is to first, capture motion of the chicken by PIR motion
sensor. Second, the PIR sensor transmits a signal to the camera and then the camera takes a photo of
the chicken. In the end, the camera that is connected to Wifi will send the photo to the user via email.
The energy supply of this project comes from a solar panel, which means the project is totally
environment friendly.

2.Methods and Materials

2.1 Materials:

breadboard

female jumper wires

male to female jumper wires

HC-SR501 PIR Sensor

ESP32-camera

FTDI programmer

solar panel

battery

Adafruit Universal USB / DC / Solar Lithium lon/Polymer charger - bq24074

LNV A WNE

2.1.1 HC-SR501 PIR Sensor

PIR stands for Passive Infrared Sensor. A PIR sensor consists of two parts: Pyroelectric Sensor and
Fresnel Lens.

Pyroelectric infrared sensors can detect infrared rays emitted by warm objects like people or certain
animals and convert them into electrical signals for output. When the crystals at the two slots are
heated, positive differential charges (charges of equal quantity but opposite signs) will be generated
at both ends of the crystal slots. This electric polarization phenomenon due to thermal changes is
called the pyroelectric effect. Usually, the bound charges generated by the spontaneous polarization
of the crystal are neutralized by the free electrons attached to the surface of the crystal from the air,
and the spontaneous polarization moment cannot be shown. When the temperature changes, the
positive and negative charges in the crystal structure will be shifted, and the phenomenon of running
off charges occurs on the crystal surface. To be more specific, the state of charge depletion is
proportional to the degree of polarization.

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2023/07/24

13:03 amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

The pyroelectric sensor is sensitive to temperature. It is made of ceramic oxide or piezoelectric crystal
elements. The two surfaces of the element are made of electrodes. When the temperature changes
by AT, the pyroelectric effect will generate a charge of AQ on the two electrodes. A weak voltage AV is
generated between the electrodes. The charge of AQ generated by the pyroelectric effect will
combine with the ions in the air and disappear. When the ambient temperature is stable, as AT=0, the
sensor has no output. When the human or chicken body enters the detection area, AT is generated
due to the difference between the human body temperature and the ambient temperature. If the
human or chicken body does not move after entering the detection area, the temperature does not
change, which means the sensor has no output. So it is the principle of RIP sensor detecting human
body or animal activity.

Pir Sensor Output

There are three Pinout: GND, OUT, VCC.

VCC is the power supply of the sensor. In our project, we connect the 5V to this pin.

Output is the TTL logic pin that transfers the detecting motion. When the motion of a warm body is
strong, it goes HIGH. On the contrary, it goes LOW when no motion is detected.

GND stands for GROUND, it works with VCC and comes up with a close circuit.

Advantages:

1. It does not emit any type of radiation.
2. The power consumption of the device is small, which is easy to install in the chicken house.
3. Inexpensive.

Disadvantages:

1. Easy to be interfered with by various heat sources and light sources.

2. Vulnerable to interference from radio frequency radiation.

3. When the ambient temperature is close to the human body temperature, the detection and
sensitivity will drop obviously, sometimes resulting in short-term failure. For example, the body
temperature of chicken is 41 °C, the temperature of my hometown Nanjing, China in summer is
up to 40 °C. The temperature difference is too low for the sensor to detect the motion of
chicken.

Lens:

In order to make the detection area larger, a special but low cost technology called Fresnel Lens is
used. The Fresnel Lens condenses light, which provides a larger IR range for the sensor. The cover of
the PIR sensor consists of multiple small Fresnel Lens.

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2023%3Agroup-y%3Astart&media=amc:ss2023:group-y:pir_1.jpg

2026/01/14 03:13 3/22 Advanced Chicken House

2.1.2 ESP32-camera

The ESP32-CAM is a popular development board designed for applications requiring a camera module.
It includes multiple data pins, a combined Wi-Fi and camera module, and a microSD card slot for easy
storage. In this project we mainly use the Wi-Fi function and following pins: Power Pins (5V, 3.3V and
GND), general purpose input/output pins (GPI012), serial pins (UOR, UOT) and GPIOO.

2.1.3 Adafruit Universal USB / DC / Solar Lithium lon/Polymer charger -
bq24074

2.2 Method:
2.2.1 Wire connection to upload the code

ESP32CAM - FTDI Programmer
UOR - TXD
uoT - RXD
GND - GND

ESP32CAM - Breadboard
5V - positive rail of the breadboard
GND - negative rail of the breadboard

ESP32CAM - PIR
GPIO12 - OUT

PIR - Breadboard
VCC - positive rail of the breadboard
GND - negative rail of the breadboard

FTDI Programmer - Breadboard
VCC - positive rail of the breadboard

Flashing mode
GPIOO - GND

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2023%3Agroup-y%3Astart&media=amc:ss2023:group-y:connection_upload_code.jpg

Last update: 2023/07/24
13:03

2.2.2 The principle of connecting the ESP32-CAM and FTDI Programmer:

amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

Because ESP32-CAM does not have a built-in programmer, it is necessary to upload the code to ESP32
before connecting the board and PIR sensor. Here we use FTDI as an information transfer station for
code transmission.

To transfer code or data from the computer to the ESP32 using the FTDI converter, you need to
establish UART communication between the FTDI chip and the ESP32. UART (Universal Asynchronous
Receiver/Transmitter) is a popular serial communication protocol that allows two devices to send and
receive data asynchronously.

2.2.3 How to connect and transmit data between FTDI and ESP32-CAM:

Connect the TX pin of the FTDI to the RX (UOR) pin of the ESP32. This connection allows data
transmitted from the FTDI to be received by the ESP32.

Connect the RX pin of the FTDI to the TX (UOT) pin of the ESP32. This connection allows data
transmitted from the ESP32 to be received by the FTDI.

Connect VCC to 5V and GND to GND to form a circuit to supply current.

Finally, connect GPIO0 and another GND pin. The purpose of this step is to change the boot mode of
the ESP32. After the ESP32, FTDI and computer are all connected, press the “Reset” button on the
ESP32, and then the board will enter programming mode. At this point, with the Arduino running, the
code data can be sent to the board by TX and RX and saved. After the Arduino shows finished,
disconnect GPIO0O and GND and press the reset button again to return the board to normal working
mode and use.

—GN Battery e e T ESP32-CAM NE—

FIR

2.2.4 Wire connection in operation

ESP32CAM - Breadboard
5V - positive rail of the breadboard
GND - negative rail of the breadboard

ESP32CAM - PIR
GPIO12 - OUT

PIR - Breadboard
VCC - positive rail of the breadboard

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2023%3Agroup-y%3Astart&media=amc:ss2023:group-y:wire_connection.jpg

2026/01/14 03:13 5/22 Advanced Chicken House

GND - negative rail of the breadboard

Lithium lon/Polymer charger - Breadboard
LiPo - positive rail of the breadboard
GND - negative rail of the breadboard

3.Code

References for this project are from:

Arduino IDE + ESP32 CAM ESP32-CAM Capture and Send Photos Via Email using an SMTP Server and
PIR

Arduino IDE + ESP32 CAM Capture and Send Photos Via Email using an SMTP Server and PIR (Update)

//>>
S>S>>>S>>>>>>>>>>>>>> (05 ESP32 Cam Capture and Send Photos Via Email with
PIR (Without LED Flash)
/ >k 3k K 5k >k >k K >k >k

Rui Santos

Complete instructions at
https://RandomNerdTutorials.com/esp32-cam-projects-ebook/

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files.
The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.
kokskokokokokokok

/*

* Uteh Str

*

* References for this project are from :
https://randomnerdtutorials.com/esp32-cam-send-photos-email/

* I made some modifications and combinations of the above references to
create this project.

*/

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2023%3Agroup-y%3Astart&media=amc:ss2023:group-y:wire_connection_operation.jpg
https://www.youtube.com/watch?v=QJc2ZUeBpn8&ab_channel=UtehStr
https://www.youtube.com/watch?v=QJc2ZUeBpn8&ab_channel=UtehStr
https://www.youtube.com/watch?v=jfw1XdqlvW8&ab_channel=UtehStr

Last update: 2023/07/24

13:03 amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

/* Including the libraries */
#include "esp camera.h"

#include "SPI.h"

#include "driver/rtc_io.h"

#include "ESP32 MailClient.h"

#include <FS.h>

#include <SPIFFS.h>

#include <WiFi.h>

/* */
/* Defining variables for Email */
/*

* Specifically for Gmail users :

* - To send Email using Gmail use port 465 (SSL) and SMTP Server
smtp.gmail.com

* - Especially for the Sender's Gmail account, so that ESP32 CAM can log
into the sender's Gmail account,

o the Sender's Gmail account must activate 2-Step Verification then get
"App Passwords". The method is in the video. Watch carefully.

*/

#define emailSenderAccount "amc491561@gmail.com@gmail.com"”

#define emailSenderAppPassword "vsvncigerihrhurx"

#define smtpServer “smtp.gmail.com"

#define smtpServerPort 465

#define emailSubject "ESP32-CAM Photo Captured"

#define emailRecipient "YOUR EMAIL RECIPIENT@gmail.com"

/* */

s Defining the Camera Model and
GPIO */

#define CAMERA MODEL AI THINKER

#if defined (CAMERA MODEL AI THINKER)

#define PWDN GPIO NUM 32
#define RESET GPIO NUM -1
#define XCLK GPIO NUM 0
#define SIOD GPIO NUM 26
#define SIOC GPIO NUM 27
#define Y9 GPIO NUM 35
#define Y8 GPIO NUM 34
#define Y7 GPIO NUM 39
#define Y6 _GPIO NUM 36
#define Y5 GPIO NUM 21
#define Y4 GPIO NUM 19
#define Y3 GPIO NUM 18
#define Y2 GPIO NUM 5
#define VSYNC GPIO NUM 25
#define HREF _GPIO NUM 23
#define PCLK GPIO NUM 22

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

2026/01/14 03:13 7122 Advanced Chicken House

#else
#error "Camera model not selected"
#endif
/5 == w5/

#define FILE PHOTO "/photo.jpg" //--> Photo File Name to save in SPIFFS

#define pin Pir 12 //--> PIR Motion Detector PIN

/* == Variables for network */
// REPLACE WITH YOUR NETWORK CREDENTIALS

const char* ssid = "iotlab";

const char* password = "iotlabl8";

/* == */

SMTPData smtpData; //--> The Email Sending data object contains config and
data to send

/*

Function to read PIR sensor value (HIGH/1 OR LOW/0) */
bool PIR State() {
bool PRS = digitalRead(pin Pir);

return PRS;
}
/*
¥
/*

Function to check if photos are saved correctly in SPIFFSl */
bool checkPhoto(fs::FS &fs) {
File f pic = fs.open(FILE PHOTO)
unsigned int pic sz = f pic.size();
Serial.printf("File name: %s | size: %d\n", FILE PHOTO, pic sz);
return (pic_sz > 100);
f pic.closel();
¥
/*

*/

/*

_____Subroutine for formatting SPIFFS */
// This subroutine is used in case of failure to write or save the image
file to SPIFFS.
void SPIFFS format() {
bool formatted = SPIFFS.format();
Serial.println();

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2023/07/24
13:03
Serial.println("Format SPIFFS..."
formatted
Serial.println("\n\nSuccess formatting"

amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

Serial.println("\n\nError formatting"
Serial.println

/*

*/

/*

___Subroutine for Capture Photo and Save it to SPIFFS */
void capturePhotoSaveSpiffs(void

camera fb t * fb = NULL; //--> pointer

bool Status save photo = 0; //--> Boolean indicating if the picture has
been taken correctly

/7 s=====sccccocossss=c-cscccococosoococoas Take a photo with the camera
*/

Serial.println

Serial.println("Taking a photo..."

delay (2000
fb = esp camera fb get
fb

Serial.println("Camera capture failed."
Serial.println("Carry out the re-capture process..."

fb
Serial.println("Take photo successfully."
/* __ */
[/ s===========s2=2=5=c=c=c=cssscszszc-cocs Save photos to SPIFFS */
[J% gppepppeoooopooooooopononooopoooooooooonooonoonna [BAGEG FilE RNEME %/

Serial.printf("Picture file name: %s\n", FILE PHOTO
File file = SPIFFS.open(FILE PHOTO, FILE WRITE

JX rrrrrrrrrirrrriiiiiiiirriiiiiiiiiiiiiiiiiiiiiiinox/
J¥ orrrrrrrrrrrrrrriricicirrrrrrrrrrrrrrrrrrrrrrrr Insert the data in
the photo file */
file

Serial.println("Failed to open file in writing mode."
SPIFFS format
capturePhotoSaveSpiffs

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/01/14 03:13 9/22 Advanced Chicken House

else {
file.write(fb->buf, fb->1len); // payload (image), payload length
Serial.print("The picture has been saved in ");
Serial.print(FILE PHOTO) ;
Serial.print(" - Size: ");
Serial.print(file.size());
Serial.println(" bytes.")

’

JX rrrrrrrrrrrrrrrriirirrirrrrirrirrirrrrirrirrirl: check if file has
been correctly saved in SPIFFS */

Serial.println("Checking if the picture file has been saved correctly in
SPIFFS...");

Status save photo = checkPhoto(SPIFFS);

it (Status _save photo == 1) {

Serial.println("The picture file has been saved correctly in

SPIFFS.");

} else {
Serial.println("The picture file is not saved correctly in SPIFFS.");
Serial.println("Carry out the re-save process...");
Serial.println();
}
[BT E e E e 8085585858555 5858858588585888¢888888 %
; while (!Status save photo);
/* __ */

esp camera fb return(fb); //--> return the frame buffer back to the driver
for reuse.

}
/*

*/

/*

___Subroutine to get the Email sending status */

// Callback function to get the Email sending status

void sendCallback(SendStatus msg) |
Serial.println(msg.info()); //--> Print the current status

}
/*

*/

/*

Subroutine for send photos via Email */
void sendPhoto(void) {

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2023/07/24

13:03 amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

Serial.println("Sending email...");

// Set the SMTP Server Email host, port, account and password
smtpData.setlLogin(smtpServer, smtpServerPort, emailSenderAccount,
emailSenderAppPassword) ;

// Set the sender name and Email
smtpData.setSender("ESP32-CAM UTEH STR PIR Sensor", emailSenderAccount);

// Set Email priority or importance High, Normal, Low or 1 to 5 (1 is
highest)
smtpData.setPriority("High");

// Set the subject
smtpData.setSubject(emailSubject) ;

// Set the email message in HTML format

smtpData.setMessage("<h2>Photo captured with ESP32-CAM and attached in
this email.</h2>", true);

// Set the email message in text format

//smtpData.setMessage("Photo captured with ESP32-CAM and attached in this
email.", false);

// Add recipients, can add more than one recipient
smtpData.addRecipient (emailRecipient) ;
//smtpData.addRecipient (emailRecipient?2);

// Add attach files from SPIFFS
smtpData.addAttachFile(FILE PHOTO, "“image/jpg");

// Set the storage type to attach files in your email (SPIFFS)
smtpData.setFileStorageType(MailClientStorageType: :SPIFFS) ;

// sendCallback
smtpData.setSendCallback(sendCallback) ;

// Start sending Email, can be set callback function to track the status
17 (!MailClient.sendMail (smtpData))
Serial.println("Error sending Email, " + MailClient.smtpErrorReason());

// Clear all data from Email object to free memory
smtpData.empty();

// The LED Flash flashes 1 time with a duration per 1 second,
// which means that the process of sending photos via email has been
completed (regardless of whether the photo was successfully sent or not).
delay (2000);
¥
/*

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

2026/01/14 03:13 11/22 Advanced Chicken House

*/

/*

~___VOID SETUP() */
void setup() {
// put your setup code here, to run once:
WRITE PERI REG(RTC CNTL BROWN OUT REG, 0); //--> disable brownout detector

Serial.begin(115200);
Serial.println();

pinMode (pin Pir, INPUT);

YA e T T Loop to stabilize the PIR
sensor at first power on. */
/*
* I created this loop because from the tests I did that when the PIR
sensor starts to turn on,
* the PIR sensor takes at least 30 seconds to be able to detect movement
or objects stably or with little noise.
* I don't know if it's because of the quality factor of the PIR sensor I
have.
* From this source:
https://lastminuteengineers.com/pir-sensor-arduino-tutorial/,
* indeed the PIR sensor takes 30-60 seconds from the time it is turned on
to be able to detect objects or movements properly.
*/
Serial.println("Wait 60 seconds for the PIR sensor to stabilize.");
Serial.println("Count down :");
for(int i = 29; i > -1; i--) {
Serial.print(i);
Serial.println(" second");
delay(1000);
}
Serial.println("The time to stabilize the PIR sensor is complete.");
Serial.println();

T * /
YA e T Connect to Wi-Fi */
WiFi.begin(ssid, password);
Serial.print("Connecting to WiFi...");
while (WiFi.status() !'= WL _CONNECTED) {

delay(500);

Serial.print(".");
}
Serial.println();
Serial.print("Successfully connected to ");
Serial.println(ssid);
/* __ */

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2023/07/24
13:03

amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

Y e Print ESP32 Local IP Address

Serial.print("IP Address: http://"
Serial.println(WiFi.localIP

Serial.println

/* __ */

JF sesssscsscsccscsccscocssoscossocssoooas Starting to mount SPIFFS */
Serial.println("Starting to mount SPIFFS..."
SPIFFS.begin(true
Serial.println("An Error has occurred while mounting SPIFFS"
Serial.println("ESP32 Cam Restart..."
ESP.restart

Serial.println("SPIFFS mounted successfully"

YA e Camera configuration. */
camera config t config

config.ledc channel = LEDC CHANNEL 0
config.ledc timer = LEDC TIMER 0O
config.pin d0 = Y2 GPIO NUM
config.pin d1 = Y3 GPIO NUM
config.pin d2 = Y4 GPIO NUM
config.pin d3 = Y5 GPIO NUM
config.pin d4 = Y6 GPIO NUM
config.pin d5 = Y7 GPIO NUM
config.pin d6 = Y8 GPIO NUM
config.pin d7 = Y9 GPIO NUM
config.pin xclk = XCLK GPIO NUM
config.pin pclk = PCLK GPIO NUM
config.pin vsync = VSYNC GPIO NUM
config.pin href = HREF_GPIO NUM
config.pin sscb sda = SIOD GPIO_ NUM
config.pin sscb scl = SIOC GPIO NUM
config.pin pwdn PWDN GPIO NUM
config.pin reset = RESET GPIO NUM
config.xclk freq hz = 20000000
config.pixel format = PIXFORMAT JPEG

psramFound
config.frame size = FRAMESIZE UXGA; //--> FRAMESIZE +
QVGA | CIF|VGA|SVGA|XGA|SXGA|UXGA
/*
* From source
https://randomnerdtutorials.com/esp32-cam-ov2640-camera-settings/ :
* - The image quality (jpeg quality) can be a number between O and 63.
* - Higher numbers mean lower quality.

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

2026/01/14 03:13 13/22 Advanced Chicken House

* - Lower numbers mean higher quality.

* - Very low numbers for image quality, specially at higher resolution
can make the ESP32-CAM to crash or it may not be able to take the photos
properly.

*/

config.jpeg quality = 20;
config.fb count = 2;
} else {
config.frame size = FRAMESIZE SVGA;
config.jpeg quality = 12;
config.fb count = 1;

}
/* __ */
Y e Initialize camera */

Serial.println();
Serial.println("Camera initialization...");
esp err t err = esp camera init(&config);
it (err != ESP OK) {
Serial.printf("Camera init failed with error Ox%x", err);
Serial.println("ESP32 Cam Restart...");
ESP.restart();

)

}

Serial.print("Camera initialization was successful.");
Serial.println();
/* __ */

*/

/*

VOID LOOP() */
void loop() {
// put your main code here, to run repeatedly:

// If the PIR sensor data = 1 means that objects and movements are
detected, it will be an indicator to start the image capture process and the
process of sending images via email.

if(PIR State() == 1) {

capturePhotoSaveSpiffs(); //--> Calling the capturePhotoSaveSpiffs()
subroutine.
sendPhoto(); //--> Calling the sendPhoto() subroutine.

}

delay(1);
¥
/*

*/

/ / <<<K<KKKLKLL <L L << << << << << <<<<

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2023/07/24

13:03 amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

<L <L <L L L L LIL L 25222

3.1 Explanation of code
Import the libraires

A library is a collection of pre-written code and functions that provide additional functionality to the
Arduino sketches.

ESP32_MailClient.h allows ESP32 to send emails with attachments via SMTP servers (Simple Mail
Transfer Protocol), here is the procedure to install the ESP-Mail-Client library in Arduino.

WiFi.h allows ESP32 to connect to the local WiFi network which is useful for projects needed to
connect Arduiono to the internet to send and receive data.

<SPIFFS.h> is used to access and manage the SPIFFS(SPI Flash File System)on ESP32 board. SPIFFS
is a lightweight file system that uses the flash memory of the board to store and retrieve files.

FS.h allows to read, write, and manage files on different types of storage, such as SPIFFS, SD cards,
and internal EEPROM.

#include "esp camera.h"
#include "SPI.h"

#include "driver/rtc io.h"
#include "ESP32 MailClient.h"
#include <FS.h>

#include <SPIFFS.h>

#include <WiFi.h>

Define email

Define the email account and password that the ESP32-CAM would login as well as the recipient's
email
Define the email provider SMTP setting, the SMTP settings for different email providers are different.

#define emailSenderAccount "amc491561@gmail.com@gmail.com"
#define emailSenderAppPassword "vsvncigerihrhurx"

#define smtpServer "smtp.gmail.com"

#define smtpServerPort 465

#define emailSubject "ESP32-CAM Photo Captured"
#define emailRecipient "YOUR EMAIL RECIPIENT@gmail.com"

Insert the WiFi name and password

// REPLACE WITH YOUR NETWORK CREDENTIALS
const char* ssid "iotlab"
const char* password "iotlabl8"

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

https://randomnerdtutorials.com/esp32-send-email-smtp-server-arduino-ide/
https://randomnerdtutorials.com/esp32-cam-send-photos-email/
https://randomnerdtutorials.com/esp32-send-email-smtp-server-arduino-ide/

2026/01/14 03:13 15/22 Advanced Chicken House

The taken photo will be temporarily saved in a flash memory SPIFFS under the name
‘photo.jpg'. Define the PIR sensor OUT pin connect to GPI012

#define FILE PHOTO "/photo.jpg" //--> Photo File Name to save in SPIFFS

#define pin Pir 12 //--> PIR Motion Detector PIN

Pin definition of ESP32-CAM Al-Thinker

Each ESP32 Camera development board uses different GPIOs to connect to the camera.

/¥ ========s=sssssssosoosooososoososoo==s Defining the Camera Model and
GPIO */
#define CAMERA MODEL AI THINKER

#if defined (CAMERA MODEL AI THINKER)

#define PWDN GPIO NUM 32
#define RESET GPIO NUM -1
#define XCLK GPIO NUM 0
#define SIOD GPIO NUM 26
#define SIOC GPIO NUM 27
#define Y9 GPIO NUM 35
#define Y8 GPIO NUM 34
#define Y7 _GPIO NUM 39
#define Y6 GPIO NUM 36
#define Y5 GPIO NUM 21
#define Y4 GPIO NUM 19
#define Y3 GPIO NUM 18
#define Y2 GPIO NUM 5
#define VSYNC GPIO NUM 25
#define HREF GPIO NUM 23
#define PCLK GPIO NUM 22

‘capturePhotoSaveSpiffs()' function

The function captures an image using the camera and saves it to the SPIFFS. If any error occurs
during the process, it attempts to recover and reattempt the capture and save operation.

'sendPhoto()' function

The function configures the email settings, attaches the captured photo, sends the email using the
configured SMTP server, and then clears the data from the 'smtpData’ object

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://randomnerdtutorials.com/esp32-cam-camera-pin-gpios/

Last update: 2023/07/24

13:03 amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

‘setup()' function

The function is responsible for setting up the ESP32-CAM by disabling the brownout detector meaning
it avoids ESP32 resetting in case of small voltage fluctuations.

Set the PIR sensor pin as an input pin.

The PIR sensor needs some time to settle and calibrate after power-up before it can accurately detect
movements. Therefore here it counts down for 30 seconds before connecting to WiFi.

Define the camera configuration setting to determine the resolution, JPEG quality, and frame buffer
count.

'loop()' function

If the PIR sensor data = 1, means that motions are detected, then the camera starts taking photos
and saving to SPIFFS. After that, it sends images via email

4.Results and Discussion

4.1 Real-Time Clock(RTC)

Photos are captured and sent successfully. However, it needs some improvement. The first problem is
shown in the result photo, the file name of each photo sent by ESP32 are the same, which is
‘photo.jpg’. Although the time can be noticed from the time of the email, it is not accurate when there
is a sudden WiFi connection loss and connect in 30 minutes later. Also it is more convenient when
people want to download the photos in the computer with the photo capture time as the file name.
Therefore, the ESP32 Real-Time Clock(RTC) is used below to get the current time and use it as part of
the file name.

A rough modification of the code is here

First is to add the RTC libraries
#include "time.h"
modify 'capturePhotoSaveSpiffs()' function

void capturePhotoSaveSpiffs(void
camera fb t “fb = NULL

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2023%3Agroup-y%3Astart&media=amc:ss2023:group-y:amc_result_2.png
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2023%3Agroup-y%3Astart&media=amc:ss2023:group-y:result_gmail.png

2026/01/14 03:13 17/22 Advanced Chicken House

bool statusSavePhoto false

Serial.println
Serial.println("Taking a photo..."

delay
fb = esp _camera fb get
fb
Serial.println("Camera capture failed."
Serial.println("Retrying..."

b
Serial.println("Photo captured successfully."

struct tm timeinfo
getLocalTime(&timeinfo
Serial.println("Failed to obtain time"
esp camera_ fb return(fb

char time str
sprintf(time_str, "%04d-%02d-%02d %02d-%02d-%02d", timeinfo.tm year
timeinfo.tm mon timeinfo.tm mday
timeinfo.tm hour, timeinfo.tm min, timeinfo.tm sec

String photoFileName "/photo " String(time str “.jpg"
File file = SPIFFS.open(photoFileName, FILE WRITE

file
Serial.println("Failed to open file in writing mode."
SPIFFS format
esp _camera_ fb return(fb
capturePhotoSaveSpiffs

file.write(fb->buf, fb->1len
Serial.print("The picture has been saved as "
Serial.print(photoFileName

Serial.print(" - Size: "
Serial.print(file.size

Serial.println(" bytes."

file.close

Serial.println("Checking if the picture file has been saved correctly in
SPIFFS..."

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/sprintf.html

Iiz;%;pdate: 2023/07/24 amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

statusSavePhoto = checkPhoto(SPIFFS) ;
17 (statusSavePhoto) {
Serial.println("The picture file has been saved correctly in SPIFFS.");
FILE PHOTO = photoFileName; // Set the new file name to the global
variable FILE PHOTO
} else {
Serial.println("The picture file is not saved correctly in SPIFFS.");
Serial.println("Retrying...");
esp camera_fb return(fb);
capturePhotoSaveSpiffs();
return;

}

esp camera_ fb _return(fb);

}
modify 'setup()' function

void setup() {
// put your setup code here, to run once:
WRITE PERI REG(RTC CNTL BROWN OUT REG, ©); //--> disable brownout detector

Serial.begin(115200);
Serial.println();

pinMode (pin Pir, INPUT);

YA e T Loop to stabilize the PIR
sensor at first power on. */
/*
* I created this loop because from the tests I did that when the PIR
sensor starts to turn on,
* the PIR sensor takes at least 30 seconds to be able to detect movement
or objects stably or with little noise.
* I don't know if it's because of the quality factor of the PIR sensor I
have.
* From this source:
https://lastminuteengineers.com/pir-sensor-arduino-tutorial/,
* indeed the PIR sensor takes 30-60 seconds from the time it is turned on
to be able to detect objects or movements properly.
*/
Serial.println("Wait 60 seconds for the PIR sensor to stabilize.");
Serial.println("Count down :");
for(int i = 29; i > -1; i--) {
Serial.print(i);
Serial.println(" second");
delay(1000) ;
}
Serial.println("The time to stabilize the PIR sensor is complete.");
Serial.println();

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

2026/01/14 03:13 19/22 Advanced Chicken House

YA e Connect to Wi-Fi */
WiFi.begin(ssid, password
Serial.print("Connecting to WiFi..."
WiFi.status WL CONNECTED
delay (500
Serial.print("."

Serial.println
Serial.print("Successfully connected to
Serial.println(ssid

/* __ >I</

YA e e Print ESP32 Local IP Address
*/

Serial.print("IP Address: http://"

Serial.println(WiFi.localIP

Serial.println

/* __ */

J7 ee==ss===ssc===scscccc=s==sscc==sc======== Starting to mount SPIFFS */
Serial.println("Starting to mount SPIFFS..."
SPIFFS.begin(true
Serial.println("An Error has occurred while mounting SPIFFS"
Serial.println("ESP32 Cam Restart..."
ESP.restart

Serial.println("SPIFFS mounted successfully"

YA e Camera configuration. */
camera_config t config

config.ledc channel = LEDC CHANNEL 0O
config.ledc timer = LEDC TIMER 0
config.pin d0 = Y2 GPIO NUM
config.pin d1 = Y3 GPIO NUM
config.pin d2 = Y4 GPIO NUM
config.pin d3 = Y5 GPIO NUM
config.pin d4 = Y6 GPIO NUM
config.pin d5 = Y7 GPIO_ NUM
config.pin d6 = Y8 GPIO NUM
config.pin d7 = Y9 GPIO NUM
config.pin xclk = XCLK GPIO NUM
config.pin pclk = PCLK GPIO NUM
config.pin vsync = VSYNC GPIO NUM
config.pin href = HREF GPIO NUM
config.pin sscb sda = SIOD GPIO NUM
config.pin sscb scl = SIOC GPIO NUM

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Iia;B;pdate: 2023/07/24 amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

config.pin_ pwdn PWDN GPIO NUM
config.pin reset = RESET GPIO NUM
config.xclk freq hz = 20000000
config.pixel format = PIXFORMAT JPEG

1T (psramFound
config.frame size = FRAMESIZE UXGA; //--> FRAMESIZE +
QVGA | CIF|VGA|SVGA|XGA|SXGA |UXGA
/*
* From source
https://randomnerdtutorials.com/esp32-cam-ov2640-camera-settings/ :
- The image quality (jpeg quality) can be a number between O and 63.
- Higher numbers mean lower quality.
- Lower numbers mean higher quality.
- Very low numbers for image quality, specially at higher resolution
can make the ESP32-CAM to crash or it may not be able to take the photos
properly.
*/
config.jpeg quality 20
config.fb count 2
else
config.frame size = FRAMESIZE SVGA
config.jpeg quality 12
config.fb count 1

* ¥ X X

YA e T Initialize camera */
Serial.println
Serial.println("Camera initialization..."
esp err_t err = esp camera_init(&config
if (err ESP _OK
Serial.printf("Camera init failed with error Ox%x", err
Serial.println("ESP32 Cam Restart..."
ESP.restart

Serial.print("Camera initialization was successful."
Serial.println

/* __ */

// Initialize RTC

time t now

configTime (0, 0, "pool.ntp.org"

while (true

time (&now

struct tm *timeinfo localtime (&now

1T (timeinfo->tm year 2023 1900
break

Serial.print("."
delay (1000

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/time.html
http://www.opengroup.org/onlinepubs/009695399/functions/localtime.html

2026/01/14 03:13 21/22 Advanced Chicken House

Serial.println("Time synchronized: " String(ctime(&now

Finally change the declaration

String FILE PHOTO = "/photo.jpg"

anon

[L]

As shown in the result photo, the name of the photo is now changed to the format “photo_YYYY-MM-
DD_HH-MM-SS.jpg” according to the time of capture.

While the code is not sufficiently developed, it only modifies the file name, some more
improvement on the code has to be done.

4.2 Deep Sleep Mode

We put our ESP32-Cam in Deep Sleep mode in order to reduce the power consumption. So that the
battery will last longer. In deep sleep mode, CPU and WIFi activities are cut off, but the Ultra Low
Power(ULP) co-processor is still powered on. Some of the ESP32 pins can be used by the ULP co-
processor during deep sleep.

The original concept of this project is using GPIO12 as an external wake up pin, which when the pir
sensor detects motion, it sends a digital output signal high (logical 1) to the wake up pin to trigger
esp32-cam to wake up.

While finally we found that it is not suitable to do it in this project. The reason is that when the ESP32
is in deep sleep mode, it effectively “shuts down” the processor, and the code execution stops. It does
not maintain the previous state or continue running the code where it left off. Instead, it will restart
the entire program from the beginning and start execution from the 'setup()’ function again, as if you
pressed the reset button. This means it counts down to stabilize, connect to WiFi, mount SPIFFS,
initialize the camera and take photos every time when it detects motion. Which will not take photos
efficiently.

While without using the deep sleep mode, it counts down to stabilize, connect to WiFi, mount SPIFFS
and initialize the camera once, and take photos whenever it detects motion.

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/ctime.html
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2023%3Agroup-y%3Astart&media=amc:ss2023:group-y:amc_rtc_result.png
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2023%3Agroup-y%3Astart&media=amc:ss2023:group-y:rtc_result_gmail.png
https://randomnerdtutorials.com/esp32-deep-sleep-arduino-ide-wake-up-sources/

Last update: 2023/07/24

13:03 amc:ss2023:group-y:start https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

5.Reference

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

Last update: 2023/07/24 13:03

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:13

https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc:ss2023:group-y:start&rev=1690196619

	Advanced Chicken House
	1.Introduction
	Aim of the project:

	2.Methods and Materials
	2.1 Materials:
	2.1.1 HC-SR501 PIR Sensor
	2.1.2 ESP32-camera
	2.1.3 Adafruit Universal USB / DC / Solar Lithium Ion/Polymer charger - bq24074
	2.2 Method:
	2.2.1 Wire connection to upload the code
	2.2.2 The principle of connecting the ESP32-CAM and FTDI Programmer:
	2.2.3 How to connect and transmit data between FTDI and ESP32-CAM:
	2.2.4 Wire connection in operation

	3.Code
	3.1 Explanation of code
	Import the libraires
	Define email
	Insert the WiFi name and password
	The taken photo will be temporarily saved in a flash memory SPIFFS under the name 'photo.jpg'. Define the PIR sensor OUT pin connect to GPIO12
	Pin definition of ESP32-CAM AI-Thinker
	'capturePhotoSaveSpiffs()' function
	'sendPhoto()' function
	'setup()' function
	'loop()' function

	4.Results and Discussion
	4.1 Real-Time Clock(RTC)
	A rough modification of the code is here
	While the code is not sufficiently developed, it only modifies the file name, some more improvement on the code has to be done.

	4.2 Deep Sleep Mode

	5.Reference

