2026/01/14 03:18 1/42 Irrigation Cart Nozzle

Amr Abdelkhalek (31309)

Irrigation Cart Nozzle

l. Introduction and Motivation

Water scarcity is an increasing global concern, necessitating the efficient use of available water
resources. Traditional irrigation systems often waste significant amounts of water due to a lack of
precise control over watering schedules; as can be demonstrated in the following video:

To address this issue, our target is to develop an automated irrigation cart nozzle system designed to
water plants only when necessary, thus conserving water. This system uses sensor technology to
detect the presence of plants and their specific needs, ensuring that water is used properly and
sustainably.

Il. Materials

Project Overview

In order to Simulate the Previous, a small primitive irrigation cart “GieBwagen” prototype was built.
The project consists of the irrigation cart model equipped with two VL53L0X Time-of-Flight (ToF)
sensors, an Arduino for sensor control and communication of the sensors' readings, and a Personal
computer running Python Jupyter-Notebooks for data visualization and further processing.
Communication between the Arduino and the laptop is facilitated via MQTT.

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://www.youtube-nocookie.com/embed/G4985ZXpM_k?
https://www.youtube-nocookie.com/embed/G4985ZXpM_k?

Last
update:
2024/07/31
02:44

Components and Descriptions

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

The following table shows the general components needing for creating a single irrigating nozzle

Table 1: Components and Descriptions

Component Description

Arduino and VL53L0X The Arduino microcontroller interfaces with two VL53L0X sensors to
Sensors detect plant presence and monitor the movement of the irrigation cart.
LED-Licht Acts as an alternative to the valve or the actuator that will be used to

water the plant in the future.
Laptop with Python Jupyter |Processes and visualizes data from the sensors, running Jupyter

Notebooks Notebooks for interactive analysis and decision making for the actuator.
MQTT is currently used for communication between the Arduino and the

Communication Protocol laptop, with possible exploration into WebSockets for improved
performance.

lll. Methods and Implementation Details

Setup

The following diagram Figure 1 shows the overall layout of our project: the system uses LIDAR sensors
for distance measurements, processes the data with an ESP32-S3-WROOM-1 microcontroller, and
communicates the results to a personal computer and other components.

e VLX53LOX (LIDAR Sensors):

Horizontal Distance Input: One VLX53L0X sensor measures horizontal distance. Vertical Distance
Input: Another VLX53L0X sensor measures vertical distance.

e ESP32-S3-WROOM-1 (Arduino):

Receives distance readings from both VLX53L0X sensors (horizontal and vertical distance). Processes
these readings and performs various tasks based on the data.

e LED Light/Actuator:

Connected to the Arduino. Can be turned on or off based on commands from the Arduino.
» Battery/Charger:

Powers the ESP32-S3-WROOM-1.
e MQTT Server:

Receives processed readings (distance data and actuator state) from the Arduino. Sends actuator
control commands (like “On” or “Off”) to the Arduino.

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 3/42 Irrigation Cart Nozzle

e Personal Computer with Jupyter Notebooks:

Communicates with the MQTT server to receive the distance readings and actuator state. control
commands to the MQTT server, which then relays them to the Arduino.

Lidar Sensor Horizontal

Distance readings Actuator Readings
Horizontal Distance | vixs3iox [Output] . (ron""off") (tx,2) Actuator | Readings
[Input] [Input] [Output] ("on Mot (tx,z)

[Output] [Input]

Lidar Sensor
Veritcal Distance
readings

[Output] [Output]
Actuator

'y

On/Off

Vertical Distance
[Input]

Fig. 1: Project Layout

The following Figure 2 is the implementation of the previous layout in real-life application:

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:blank_diagram.png

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

"

#

o

Fig. 2: Real-life Implementation

1. Vertical VL53L0OX Sensor

2. LED-Licht

3. Horizontal VL53L0X Sensor
4. ESP32-S3-WROOM-1 Arduino

System Description

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:untitled.png

2026/01/14 03:18 5/42 Irrigation Cart Nozzle

Sensor Setup

Two VL53L0X sensors are utilized in this system:

* Vertical Sensor: An upside down sensor to detect level difference on the ground which is used
to detect changes in height to identify the presence of a plant.

* Horizontal Sensor: Monitors the lateral movement of the irrigation cart to ensure accurate
positioning.

Functional Workflow

* Detection of Plant Presence: The vertical sensor identifies height changes. When the sensor
detects a height above a certain threshold, it indicates the presence of a plant.

* Movement Tracking: The horizontal sensor tracks the cart's sliding movement to ensure it is
correctly aligned with the plants.

e Watering Mechanism: Based on sensor data, the system decides when to activate or
deactivate the water nozzle, ensuring water is only dispensed when a plant is present.

Arduino Code

The Arduino code handles data collection from the VL53L0X sensors and communicates with the
laptop via MQTT. Below is an excerpt from the Arduino

The C++ code was used... please find the comments to clarify as steps proceed

Two_TOFs_VL53L0X_Profiler_S3_Dev_publisher.ino

#include <Wire.h>

#include <WiFi.h>

#include <PubSubClient.h>
#include <Adafruit VL53L0OX.h>
#include <math.h>?>

// Toggle Debug Messages

bool debugOn = true;

// Set Interval
uintlée t hz = ;

// Replace with your network credentials
const char* ssid = "SSID";
const char* password = "SSID Password";

// Our MQTT Broker IP address
const char* mqtt server = "test.mosquitto.org";
const char* my client id = "ESP32Client";

const char* my mqtt topic sensor = "gw/duese002";
const char* my mqgtt topic_actuator = "gw/duese0@02-licht";

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/doku.php?do=export_code&id=amc:ss2024:irrigantion_cart_nozzle:start&codeblock=0

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

// Setup WiFi client and MQTT client
WiFiClient espClient;
PubSubClient client(espClient);

// Set up an instance for each sensor
Adafruit VL53LOX tofl = Adafruit VL53LOX();
Adafruit VL53LOX tof2 = Adafruit VL53LOX();

// Shutdown pins
#define SHT TOF1 35 //32 in our older system
#define SHT TOF2 40 //33 in our older system

// Sensor readings
uintle t x = 0;
uintle t z = 0;

// Define the data object for sensor measurement
VL53LOX RangingMeasurementData t measurel;
VL53LOX RangingMeasurementData t measure2;

unsigned long lastMsg = 0;

// LED Pins
const int dueselLedPin = 4;
const int OoRLedPin = 15; //25 in our older system

int sda pin = 16; // GPI016 as I2C SDA (Right Blue Side on Board)
int scl pin 17; // GPIO17 as I2C SCL (Right Red Side on Board)

void setup
Wire.setPins(sda pin, scl pin); // Set the I2C pins before begin
Wire.begin(); // join i2c bus (address optional for master)
debugOn) Serial.begin(115200);
setup wifi();
client.setServer(mgtt server, 1883);

client.setCallback(callback);

pinMode (dueselLedPin, OUTPUT);
pinMode (OoRLedPin, OUTPUT);

digitalWrite(dueselLedPin, LOW);
digitalWrite(OoRLedPin, LOW);

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 7/42 Irrigation Cart Nozzle

pinMode (SHT TOF1, OUTPUT);
pinMode (SHT TOF2, OUTPUT);

digitalWrite(SHT TOF1l, LOW);
digitalWrite(SHT TOF2, LOW);

delay(10);
digitalWrite(SHT TOF1, HIGH);
delay(10);

// Initialize sensor 1
Itofl.begin(0x30
debug(F("Failed to boot VL53LOX - 01 (Vertical)"));
1

delay(10);
digitalWrite(SHT TOF2, HIGH);
delay(10);

// Initialize sensor 2
Itof2.begin
debug(F("Failed to boot VL53LOX - 02 (Horizontal)"));
1);

digitalWrite(SHT TOF1, HIGH);
digitalWrite(SHT TOF2, HIGH);

delay(10);

void loop
Iclient.connected
reconnect();

client.loop();

Llong now = millis();
now - lastMsg > long (1000 / hz // Data transmission rate of
10Hz
lastMsg = now;

// Reading distance from both sensors
tofl.getSingleRangingMeasurement (&measurel, false);
measurel.RangeStatus != 4
Z = measurel.RangeMilliMeter;
//Serial.print("Distance Vertical (mm): ");
Serial.println(measurel.RangeMilliMeter);

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last

;822}8;/31 amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

02:44

tof2.getSingleRangingMeasurement (&measure2, false);
measure2.RangeStatus != 4
X = measure2.RangeMilliMeter;
//Serial.print("Distance Horizontal (mm): ");
Serial.println(measure2.RangeMilliMeter);

// Current time in milliseconds.
long t = now;

// Create data payload
String payload = String("(") + String(t) + ", " + String(x) + ", "
+ String(z) + ")";

// Publish data
// Checks the readings noise-freeness; VL53LOX gives an output of
8191 by having so much noise by the environment
X != 8191 && z != 8191 && x > 90 && z > 90
digitalWrite(OoRLedPin, LOW);
client.publish(my mqtt topic sensor, (char*)payload.c str ;
debug(payload) ;

digitalWrite(OoRLedPin, HIGH);

void setup wifi
delay(10);
debug("");
debug("Connecting to ");
debug(ssid);

WiFi.begin(ssid, password);

WiFi.status I= WL CONNECTED
delay(500);

debug(".");

debug nn ;
debug("WiFi connected");

void reconnect

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 9/42 Irrigation Cart Nozzle

//debug(F("Connecing to the MQTT server ..."));
//debug(mqtt server),;

while (!client.connected

it (client.connect(my client id
// Once connected, resubscribe to the required topic
client.subscribe(my mgtt topic actuator);
//Serial.println("MQTT connected"),; //state when successfully
connected to the MQTT server

else
//Serial.print(client.state());
//delay(5000);

debug(F(".."));

void callback(char* topic, byte* message, unsigned int length
String messageTemp;

for (int i = 0; i < length; i++
Serial.print((char)messagel[i]);
messageTemp += (char)messagel[i];

// Feel free to add more if statements to control more GPIOs with
MQTT

// If a message is received on the topic esp32/output, you check if
the message is either "on" or "off".
// Changes the output state according to the message
it (String(topic) == my mqtt topic actuator
1T(messageTemp == "on"
digitalWrite(dueselLedPin, HIGH);

else if(messageTemp == "off"
digitalWrite(dueselLedPin, LOW);

void debug(String msg
17 (debugOn
Serial.println(msg);

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last

;822}8;/31 amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

02:44

Python Code

Required Libraries

To install the required libraries for the project, open and download the following text file
“requirements.txt”

requirements.txt

bgplot
traits
numpy
paho-mqtt
ipywidgets
pandas

Then run the following terminal command in the environment where you will run the project:

pip install -r requirements.txt
MQTT Client Setup and Configuration

Setting the active MQTT broker address to "test.mosquitto.org"
BROKER “test.mosquitto.org"

Setting the active MQTT topic to "gw/duese@02"
TOPIC "gw/duese02"

Setting the MQTT username
USER = "user"

Setting the MQTT password
PW n pwll

Importing the paho-mqtt client library for MQTT communication
paho.mgqtt.client mqtt

Importing bgplot for creating interactive plots
bgplot
bgplot.pyplot plt

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

https://student-wiki.eolab.de/doku.php?do=export_code&id=amc:ss2024:irrigantion_cart_nozzle:start&codeblock=1

2026/01/14 03:18 11/42 Irrigation Cart Nozzle

bgplot LinearScale

Importing ipywidgets for creating interactive widgets in Jupyter notebooks
ipywidgets widgets

numpy np
IPython.display display, clear output

Setting the MQTT callback API version to version 2
my mqtt api ver = mqtt.CallbackAPIVersion.VERSION2

Creating an Output Widget for Displaying Decoded MQTT Messages

Creating an output widget with a border layout
out = widgets.Output(layout={'border': 'lpx solid black'

Appending an initial message to the output widget
out.append stdout('HERE THE DECODED MQTT MESSAGES WILL BE SHOWN!\n'
display(out

Initializing Data and Plot for Plant Profile Scanner

Initialize additional variables for data processing

i 0

t0 traw t X Z 0
payload "

dx 5 # mm

#N2 = 200

#N1 = 50

N1 = 870 # Number of data points

Xsc_min = 0
XSC_max 1000
ysc_min = 0

ysc max = 500
XsC_margin = 20
ysc_margin = 20

X_acc np.arange(xsc_min, xsc _max+le-3, dx) # Initialize with empty arrays
N2 = len(x_acc
n_acc np.array(np.zeros (N2 # Initialize with empty arrays

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

Z _acc np.array(np.zeros (N2 # Initialize with empty arrays

Generate N1 linearly spaced data points between xsc min and xsc max to
represent the x-axis values

x_data = np.linspace(xsc min, xsc _max, N1

Initialize an array of zeros with length N1 to represent the z-axis values
z data np.array(np.zeros(N1

Initialize an array of zeros with length N1 to represent the t-axis (time)
values
t data = np.array(np.zeros(N1l

Combine t data, x data, and z data into a single array and transpose it to
have the correct shape (N1, 3)
data = np.array(|[t data, x data, z datal).T

Update the first data set in the plotter with the combined data array
plotter.update datal(data

Generate random data for the second data set, with values scaled by 1,
1000, and 500 for t, x, and z respectively
data2 np.random.rand(N2, 3) * (1, 1000, 500

Update the second data set in the plotter with the generated random data
plotter.update data2(data2

Clear the current plot by removing all data points from both scatter plots
plotter.clear

PlantProfilePlot Class for Dynamic Data Plotting

The PlantProfilePlot class is designed to create a dynamic plot of plant profiles, updating the plot with
new data in real-time. It leverages the HasTraits class from the traits library to observe changes in
data and update the plot accordingly.

class PlantProfilePlot (HasTraits

Import global variables to be used in the class

global N1, N2, xsc min, ysc min, XSc_max, ysc _max, XSC_margin
ysc margin

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 13/42 Irrigation Cart Nozzle

Create a figure for plotting with specified layout dimensions
fig plt.figure(layout=dict (height="600px", width="1200px"

Define x and y scales for the plot, including margins

x_scale = LinearScale(min=xsc_min - xsC_margin, max-=xsc_max +
XSC_margin

y scale = LinearScale(min=ysc min - ysc margin, max-ysc max +
ysc_margin

Initialize arrays to store data for plotting

figdatal = Array(shape=(N1, 3 # Array for first scatter plot: columns
are t, x, z

figdata2 = Array(shape=(N2, 3 # Array for second scatter plot:
columns are t, x, z

Initialize empty scatter plots with specified colors and sizes

scatterl = plt.scatter colors=|'red’ default size-=30
scales={'x': x scale, 'y': y scale
scatter2 = plt.scatter colors=|["'blue’ default size=20

scales={'x': x _scale, 'y': y scale

__init (self):

super (PlantProfilePlot, self). init

Initialize figdata arrays with random data scaled by max x and y
values

self.figdatal = np.random.rand(N1l, 3) * (1, XsC max, yscC max

self.figdata2 = np.random.rand(N2, 3) * (1, Xxsc_max, ysC_max

observe("figdatal"
~on figdatal update(self, change):
Update scatterl plot when figdatal changes
self.scatterl.hold sync(): # Disable automatic updates during
this block

self.scatterl.x None:
self.scatterl.x self.figdatall:, 1
self.scatterl.y = self.figdatall:, 2

self.scatterl = plt.scatter(self.figdatall:, 1
self.figdatall:, 2 colors=["'blue’

observe("figdata2"
_on_figdata2 update(self, change):
Update scatter2 plot when figdata2 changes
self.scatter2.hold sync(): # Disable automatic updates during
this block
self.scatter2.x None:
self.scatter2.x = self.figdata2[:, 1

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last

;822}8;/31 amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

02:44

self.scatter2.y = self.figdata2[:, 2
else:
self.scatter2 = plt.scatter(self.figdata2[:, 1
self.figdata2[:, 2 colors=|"'red’

def update datal(self, new data):
Method to update figdatal with new data
self.figdatal = new data

def update data2(self, new data
Method to update figdataZ with new data
self.figdata2 = new data

det clear(self
Method to clear both scatter plots
self.scatterl.x, self.scatterl.y
self.scatter2.x, self.scatter2.y

Instantiate the PlantProfilePlot class and display the plot
plotter = PlantProfilePlot
plt.show

Initialize and Update Data Arrays for Plotting

Generate N1 linearly spaced data points between xsc min and xsc _max to
represent the x-axis values
X _data = np.linspace(xsc min, xsc max, N1

Initialize an array of zeros with length N1 to represent the z-axis values
z data np.array(np.zeros(N1l

Initialize an array of zeros with length N1 to represent the t-axis (time)
values
t data np.array(np.zeros(N1

Combine t data, x data, and z data into a single array and transpose it to
have the correct shape (N1, 3)
data = np.array(|t data, x data, z datal).T

Update the first data set in the plotter with the combined data array

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 15/42 Irrigation Cart Nozzle

plotter.update datal(data

Generate random data for the second data set, with values scaled by 1,
1000, and 500 for t, x, and z respectively
data2 np.random.rand(N2, 3) * (1, 1000, 500

Update the second data set in the plotter with the generated random data
plotter.update data2(data2

Clear the current plot by removing all data points from both scatter plots
plotter.clear

Defining Initializing System States Enum
code python
State(Enum):
IDLE 1 # State when the system is idle

WATERING 2 # State when the system is actively watering

Initialize the current state of the system to IDLE
state State.IDLE

MQTT Message Callback Function

on_message is a callback function to handle incoming MQTT messages. This function is called when a
message is received from the MQTT broker.

The function processes the received message by decoding the payload, extracting the time, x, and z
coordinates, updating the respective global variables and data arrays, and updating the plot and text
widget with the new data.

Inputs:

e client: The MQTT client instance.
e userdata: Any user data (currently unused).
e message: The MQTT message containing the payload in the format “(traw, xraw, zraw)”.

Outputs:

e Unordered List Item The function updates global variables and Ul elements but does not return
any value.

on message(client, userdata, message):
payload, plotter, out
i, t, to, x, z, traw, xraw, zraw
t data, x data, z data
n_acc, x _acc, z_acc
state

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

Parse the received message

payload = message.payload.decode('utf-8') # Decode the message payload
from bytes to a string

traw, xraw, zraw = map(float, payload.strip('()').split(',')) # Parse
the payload string and convert to floats

Initialize tO on the first message
if 1 ==
t0 = traw # Set the initial time value

Calculate the relative time and positions

traw - t0 # Calculate the elapsed time since the first message
= X0 - xraw # Calculate the x position relative to the initial x0
z0 - zraw # Calculate the z position relative to the initial z0

N X + $
Il Il

H*

Format the parsed values into a string
= f"{i:4d} {t:12.2f} {x:6.2f} {z:6.2f}"

wn

Control logic based on state and z value
1f state == state.IDLE and z > 120:
client.publish("gw/duese002-1licht", "on") # Publish "on" command if
z > 120 and in IDLE state
state = state.WATERING # Update state to WATERING
elif state == state.WATERING and z < 100:
client.publish("gw/duese002-1licht", "off") # Publish "off" command
if z < 100 and in WATERING state
state = state.IDLE # Update state to IDLE

i += 1 # Increment the message counter

Update the data arrays by shifting and adding the new values

t data = np.roll(t data, -1); t data[-1] = t # Shift t data left and
insert new t value

X _data = np.roll(x data, -1); x data[-1] = x # Shift x data left and
insert new x value

z data = np.roll(z data, -1); z datal[-1] = z # Shift z data left and
insert new z value

data = np.array(|[t data, x data, z datal).T

plotter.update datal(data)
Update the scatter plot with the new data

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 17/42 Irrigation Cart Nozzle

Calculate the index in x acc closest to x
idx = int(np.round(x / dx

Update z acc based on the calculated index
0] idx < N2:

n_acclidx 0:
Zz _acclidx z
z acclidx 4 * z acclidx] + z) / 5 # Update z acc with a

moving average formula

n_acc[idx] += 1 # Increment the counter for the corresponding x acc
index

data2 np.array([n _acc, x acc, z acc]).T # Prepare data for updating
plotter with n _acc, x acc, z acc

plotter.update datal(data) # Update plotter's first data set
plotter.update data2(data2) # Update plotter's second data set

MQTT Client Connection Callback Function

It is a callback function to handle MQTT client connection events.

Parameters

1. client: paho.mqtt.client.Client
o The MQTT client instance that is calling the callback.
2. userdata: any
o The private user data as set in Client() or userdata_set(). This parameter is currently not
used in this function.
3. flags: dict
o Response flags sent by the broker.
4. rc:int
o The connection result code. This parameter indicates the success or failure of the
connection attempt.
o 0: Connection successful
1: Connection refused - incorrect protocol version
2: Connection refused - invalid client identifier
3: Connection refused - server unavailable
4: Connection refused - bad username or password
5: Connection refused - not authorized
o 6-255: Currently unused.

[¢]

o

[¢]

[¢]

[¢]

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last

;822}8;/31 amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

02:44

5. callback api_version: int
o An extra unused argument to count for the API version an avoid an error in the case of
selecting client_ID.

on_connect(client, userdata, flags, rc, callback api version

Print the connection result code to the console
"Connected with result code " + str(rc

Append the connection result code to the output widget
out.append stdout("Connected with result code " + str(rc) + "\n"

MQTT Client Configuration and Connection Setup

Create an MQTT client instance with the specified callback API version
client = mgtt.Client(callback api version-=my mqtt api ver

Assign the on connect function to handle connection events
client.on connect = on_connect
Assign the on message function to handle incoming messages
client.on message = on _message

#client.username pw set(USER, PW) #1f it needed any
Connect to the specified MQTT broker

client.connect (BROKER, 1883, 60

Subscribe to the specified MQTT topic
client.subscribe(TOPIC

Start the MQTT client loop in the background
client.loop start

While also allows the program to react directly as soon as it receives the readings to publish back if
the water.state should be on or off (because of the on_message function)

IV. Results of the first implementation

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 19/42 Irrigation Cart Nozzle

Simulation of the system

The simulation just as expected from our code, it senses height and accordingly sets the LED-licht
“on” as a plant higher than the 120 mm is present, while it turns “off” as the height drops below

100 mm

Arduino Code Output

After activating the Serial Monitor from the tools bar in the arduino IDE just as expected: the wifi
connection is set and the output is displayed exactly as it would be published via the MQTT in the
format (t, x, 2)

where t is time, x is the horizontal distance to the wall, and z is the vertical distance from the surface

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://www.youtube-nocookie.com/embed/-iVP0h_atnQ?
https://www.youtube-nocookie.com/embed/-iVP0h_atnQ?

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

L

I-'F- A R S
oy B AT C
LLO&L ¥ F
(172 12, 455
(1828, 19, 455
| - - - . 254
{ o e] LAy -
| S, &5
- - 4 :
V&£ 2Ly T Ly -
| 2.3 4 Wy oL
| &% —_ - . i |
(2535, 59, 45
| £ 10 r D7y, 2T2%
o hr By = T4 &6 A C
| = = ¥ a r [
ey e = ~ —_
LEFLOD; . ¥ -
I 27, 1, 458
L2 LALD, ooOl, SOU
. - 4 A5E
\ e L T L g 2

V. Discussion

Arduino Code Output Issues

* WiFi connection: An Antenna has to be used on the arduino to connect to the wifi for better
connection as each of this point indicates a struggle to connect to the internet by the
microcontroller

e Timeouts: rarely, but not never, does it happen where an output of exactly 65535 is displayed

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:screenshot_2024-07-17_193404.png

2026/01/14 03:18 21/42 Irrigation Cart Nozzle

by one of the two vI53I0x sensors as shown in the next figure

(76912, 1036, 402)
(77013, ©53535, 392)
(77114, €5535, 372)
(77215, 1004, 36€8)
(77316, 5535, 355)
(77417, ©5535, 33¢€)
on(/7318, 63535, 330)
(77619, ©5535, 336)
(77720, ©5535, 336

e e

(77821, ©5535, 336
(77922, €5535, 33¢)
(78023, €5535, 336)
(78124, ©5535, 336)
(78225, ©5535, 33¢)
(78326, ©5535, 336)
(78427, ©5335, 33€)
(78528, ©5535, 336)
(78625, 5535, 336)
(78730, 904, 336)

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:screenshot_2024-07-17_113750.png

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

This results from a timeout during the serial communication ... the Arduino after exceeding the
default is the one that creates this output of 65535 which is equal to (0xffff, 16 bits or 2*°) - 1 which is
an unsigned 16 bit (0-65535) at full.

tackling this issue might lie in resetting the timeout value and the measurement time budget ...
please find more elaboration on this in the following github code
https://github.com/pololu/vI5310x-arduino/blob/master/examples/Single/Single.ino

Enhancing Plant Detection - Required

The first trial was successful where we were able to establish the communication between the
microcontroller with the sensors and our personal computer. We were able to respond to the readings
from the sensors through the laptop and back to the Arduino where it turned the LED on. Any plant
above a threshold height of 120 mm was detected and irrigated and then it turned off when there was
nothing. This already saves a lot of the excessive watering originally planned to be saved.

However this does not fix the problem of not turning the water on if there is simply noise of an
obstacle above that same threshold existing temporarily on the track.

Ideally there would be a way to distinguish between actual plants and other objects with similar
heights or even pick up shorter plans.

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:screenshot_2024-07-17_113706.png
https://github.com/pololu/vl53l0x-arduino/blob/master/examples/Single/Single.ino

2026/01/14 03:18 23/42 Irrigation Cart Nozzle

Enhancing Plant Detection - 2nd
Implementation

To improve plant detection, it is crucial to distinguish between actual plants and other objects with
similar heights. The following Python Jupyter Notebook implements another method to detect peaks
representing plants, ensuring more accurate identification.

To test the peaks detection a sinusoidal plot with noise were plotted and the detection was tested on
them:

Import necessary libraries

numpy np
numpy arange, pi, sin, abs

time

pandas pd

matplotlib.pyplot plt

ipywidgets widgets
IPython.display display, clear output
matplotlib.ticker FuncFormatter, MultiplelLocator

Import VBox and HBox for arranging widgets vertically and horizontally
ipywidgets VBox, HBox

Import find peaks function from scipy for peak detection in signals
scipy.signal find peaks

Sinusoidal function with clipping

A clipped sin wave that only has positive values used to simulate a plant detection like plot

fix, A X x0

compute the sinusoidal function
y = abs(A*sin(2*pi*1/X*(x-x0

clip negative values to zero #unnecessary line but just to ensure
yly

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

Noisy peaks generation

Set the standard deviation for a normal distribution noise
STDDEV = 5.0

Generate an array of x values from O to 1000 in steps of 5
X = arange(0, 1000.1, 5)

Compute a sinusoidal function with amplitude 200, period 400, and phase
shift 0
y = f(x, A=200, X=400)

Determine the length of the x array
N = len(x)

Generate Gaussian white noise with mean 0 and standard deviation STDDEV
noise y = np.random.normal (0, STDDEV, N)

Add the generated noise to the sinusoidal function to create a noisy
signal
yS noisy = y + noise y

Plotting

plt.Figure(figsize=(10, 6), dpi=80) # Create a figure with specified size
and dpi

plt.plot(x, ys noisy, label='Total') # Plot the noisy signal

plt.plot(x, y, label='Sine') # Plot the clean sinusoidal signal
plt.plot(x, noise y, label='Gaussian White Noise') # Plot the generated
noise

Get the current axis

ax = plt.gcal()

ax.xaxis.set major formatter(FuncFormatter(lambda val, pos:
"{:.0f}πs'.format(val / np.pi) if val '= 0 else '0'))
ax.xaxis.set major locator(MultipleLocator(base=np.pi))

plt.legend(loc="'1lower right') # Display legend
plt.savefig("noisy sine.png", dpi=180) # Save the plot as an image file
plt.show() # Display the plot

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 25/42 Irrigation Cart Nozzle

200 - | IM A /“\ M I :’ﬂl\\
150 - 1 J

[| | | |
100 - .-‘ -. J \ | | \ \

50 A

— Total
Sine
—— Gaussian White Noise

Peak Detection with Various Parameters Using find_peaks

our sin generated Array with noise was then put into the find_peaks function in SciPy

Please find a clear overview over the documentation of this library and its parameters in the following
link
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#scipy.signal.find_p
eaks

These Parameters were played with a bit to find which arguments needed to be used for our specific
application

#Find peaks using different parameters and store the indices of peaks

peaks, = find peaks(ys noisy, distance=20
peaks2, = find peaks(ys noisy, prominence=1
peaks3, = find peaks(ys noisy, width=25
peaks4, = find peaks(ys noisy, threshold=0.4

Plotting each set of detected peaks

plt.subplot(2, 2, 1

plt.plot(peaks, ys noisy!|peaks “xr" plt.plot(ys noisy
plt.legend(['distance'],loc="'1lower right'

plt.subplot(2, 2, 2

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:noisy_sine.png
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#scipy.signal.find_peaks
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#scipy.signal.find_peaks

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

plt.plot(peaks2, ys noisy|peaks2 "ob" plt.plot(ys noisy
plt.legend(['prominence'],loc="'1lower right'

plt.subplot(2, 2, 3

plt.plot(peaks3, ys noisy|peaks3 "vg" plt.plot(ys noisy
plt.legend(['width'],loc="'lower right'

plt.subplot(2, 2, 4

plt.plot(peaks4, ys noisy!peaks4 "xk" plt.plot(ys noisy
plt.legend(['threshold'], loc="'1lower right'

plt.savefig("find peaks comparison.png", dpi=180) # Save the plot as an
image file

plt.show
200 A 200 A
150 - 150 A
100 - 100 A
50 - 50 A
04 X distance 0 prominence
(l) 5'0 160 1%0 2(IJO 6 5|0 1(I)O 150 200
200 A 200 A
150 - 150 A
100 - 100 A
50 A 50 A
04 Y width 0 X threshold
6 5I0 1{I)U 1_"I'>0 2{I)0 (I} SIO 1[I)0 150 260

Testing on Real Data

Real Data had to be generated and saved for an extensive testing on them and they had to be the
same readings through the multiple tests (to act as a control sample)

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:find_peaks_comparison.png

2026/01/14 03:18

27/42

Irrigation Cart Nozzle

Real data generation and saving

Global variable data was added the other defined variable in the on_message function

on_message(client, userdata, message):
payload, plotter, out

i, t, to, x, z
t data, x data

traw, Xraw, zraw
z data

n_acc, X acc, z_acc

state

data # as can be seen here

Then that data array was used after having many real readings after a visit to the lab

dataset pd.DataFrame({'t"':

columns=["'t', 'x',6 'z’

dataset.set index('t', inplace=True

dataset.to csv("./sample txz.csv"

the array were turned into a pandas dataframe then saved as a CSV file for later use

Data Loading, Preprocessing, and Filtering

Load dataset from CSV file into a pandas DataFrame

RealDataSet = pd.read csv('

sample txz.csv'

t data, 'x': x data,'z':

Extract 'z' and 'x' columns from the DataFrame and convert them to NumPy

arrays
array z - RealDataSet||'z'
array x = RealDataSet||'x'

Example of accessing the
array z/len(array z)-1

Get the shape of array z
array z.shape

.to_numpy
.to _numpy

last element in array z

Remove singleton dimensions from array z

np.squeeze(array_z).shape

Squeeze the array z to remove singleton dimensions

array z = np.squeezel(array z

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last
;822}8;/31 amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649
02:44

array X = np.squeezel(array X

Get the shape of array z after squeezing
array_z.shape

Set values in array z and array x to O if they are greater than 1000 or
less than 0

array zl(array z 1000) | (array_z < 0 0
array x| (array X 1000) | (array x < 0 0

The last function dealt temporarily with the timeout 65535 values from the Arduino ... which were
saved as a large negative value due to the following two functions:

X0 - XxXraw
z z0 - zraw

in the on_message function

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 29/42 Irrigation Cart Nozzle

Delimiter: | ,
t X z
688 58695.0 164.0 51.0 |
| 689 | 58786.0 164.0 48.0
690 | 58897.0 164.0 68.0
691 58998.0 -64335.0 78.0
I 692 59089.0 -64335.0 98.0
693 59200.0 196.0 102.0
694 59301.0 -64335.0 115.0
695 59402.0 -64335.0 134.0
696 59503.0 -64335.0 134.0
697 59604.0 -64335.0 134.0
698 59705.0 -64335.0 134.0
G99 59806.0 -64335.0 134.0
700 59907.0 -64335.0 134.0
701 60008.0 -64335.0 134.0
702 60109.0 -64335.0 1340
703 60210.0 -64335.0 134.0
704 60311.0 -64335.0 134.0
705 60412.0 -64335.0 134.0
706 60513.0 -64335.0 1340
o7 60614.0 -64335.0 134.0
708 60715.0 296.0 134.0
. 709 | 60816.0 296.0 134.0
Trial 1:

Plotting peaks detected in array z using different parameters with

find peaks

peaks, = find peaks(array z, distance=100)
peaks2, = find peaks(array z, prominence=100)
peaks3, = find peaks(array z, width=25)

peaks4, = find peaks(array z, threshold=0.4)

Plotting each set of detected peaks

plt.subplot(2, 2, 1)

plt.plot(peaks, array z|[peaks|, "xr"); plt.plot(array z);
plt.legend(['distance'],loc="'1lower right')

plt.subplot(2, 2, 2)

plt.plot(peaks2, array z|/peaks2|, "ob"); plt.plot(array z);
plt.legend(['prominence'],loc="'1lower right')

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:screenshot_2024-07-17_114025.png

Last
update:
2024/07/31
02:44

plt.subplot(2, 2, 3

plt.plot(peaks3, array z|peaks3 "vg" plt.plot(array z
plt.legend(['width'],loc="'lower right'

plt.subplot(2, 2, 4

plt.plot(peaks4, array z|peaks4 "xk" plt.plot(array z
plt.legend(['threshold'],loc="'lower right'

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

plt.savefig("Real find peaks comparison.png", dpi=180) # Save the plot as
an image file

plt.show
X
300 A 300 A
200 A 200 A
100 A 100 A
_p-vl-lﬁ X distance @ prominence
0 L T T T I T 0 L T T T T T
0 200 400 600 800 0 200 400 600 800
300 A 300 A
200 A 200 4
100 A 100 A f}
_'_L_..... Y width X threshold
0 1 0

0 200 400 600 800 0 200 400 600 800

Worthy to mention that the extreme peak at the beginning is myself being close to the sensor to
simulate a bird passing by or any presence of noise to the readings

Trial 2:

Now try the prominence and the threshold parameters together in the
find peaks function
peaks2, prm = find peaks(array z, prominence=100,threshold=0.2

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:real_find_peaks_comparison.png

2026/01/14 03:18 31/42 Irrigation Cart Nozzle

plt.plot(peaks2, array z|peaks2 "ob" plt.plot(array z
plt.legend(['prominence'], loc="'1lower right'

Save the plot as an image file
plt.savefig("find peaks prominence.png", dpi=180

plt.show

300 +]

250
200 A
150 A
100 A

N JW N L

prominence

0 200 400 600 800

using prominence is similar to using a vertical threshold such as the one we used in our earlier code
(120 mm) but cleaner and fancier.. despite using distance which can help us clear a little bit of the
horizontal noise in the case of the sensor reading multiple times the same plant over the same place
it still would not get rid of vertical noise such as myself which was indicate by the first peak being
detected ... and if an upper bound of prominance would to be used this may create a problem later
when the plants grow to greater heights.

The risk of using large distances can have the risk of ignoring another “real” plant if not watched out
for .. as clearly seen with the second peak which actually is a real plant

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:find_peaks_prominence.png

Last
update:
2024/07/31
02:44

Trial 3

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

Using Width seems to be the more reasonable choice for our application as it allows us to detect our
proper peaks while mixing this with distance makes us able to identify different plants as many peaks
can appear and turn out to be for the same plant .. as would actually come if we don't use the
distance argument for our next example. The also perfect part about it is that all it needs is just the
lower readings on both sides of the peak ... which would allow us to pick a single plant if needed as
will be demonstrated in the following:

array z sample = array z : selected one of the peaks

peaks5, wid dis = find peaks(array z sample, width=9, distance
plt.plot(peaks5, array z sample|peaks5 "vg" plt.plot(array z sample
plt.legend(['width + distance'’

plt.savefig("Peakl wid dist.png", dpi # Save the plot as an image file

array z sample = array z : #2nd Peak

peaks5, wid dis = find peaks(array z sample, width=9,distance
plt.plot(peaks5, array z sample|peaks5 "vg" plt.plot(array z sample
plt.legend(['width + distance’

plt.savefig("Peak2 wid dist.png", dpi # Save the plot as an image file

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 33/42 Irrigation Cart Nozzle

¥ width + distance ¥
175

150 A

125 A

100 A

75

50 A

25 A

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:peak1_wid_dist.png

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

2004 V¥ width + distance
175 4
150

125 A \

100 A

75

50 A

25 A

-
-
-
-
-

It produces the same peaks with the whole array of course

peaks5, wid dis = find peaks(array z, width=9, distance
plt.plot(peaks5, array z|peaks5 "vg" plt.plot(array z
plt.legend(['width + distance'

Analysing the peaks using the find_peaks parameters

This allows us to use these peaks with the output information produced by the find_peaks so that we
can analyse the peaks save them and with the possibility to save them in files and/or in online
databases

peaks5, wid dis find peaks(array z, width=9,distance
plt.plot(peaks5, array z|peaks5 "vg" plt.plot(array z
plt.legend(['width + distance'’

wid dis

{'prominences': array([179., 195.]),

‘left bases': array([544, 774], dtype=int64),
‘right bases': array([751, 859], dtype=int64),
'widths': array([59.60878378, 42.81158358]),

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2024%3Airrigantion_cart_nozzle%3Astart&media=amc:ss2024:irrigantion_cart_nozzle:peak2_wid_dist.png

2026/01/14 03:18 35/42 Irrigation Cart Nozzle

'width heights': array([95.5, 102.5]),
‘left ips': array([690.875 , 797.983870971),
‘right ips': array([750.48378378, 840.79545455])}

the left and right bases produced by the distance parameter ... would allow us to integrate the peaks
as demonstrated next:

#peak no_integ.

peak no

lower lat = wid dis|'left bases'||peak no-
upper lat = wid dis| 'right bases' || peak no-
np.trapz(array z|lower lat:upper_ lat

which gives an area under the peak value of about 7500 unit area

This can prove to be a very useful approach to keep track of the plants growth and health as the area
of their peaks may prove to say a lot about their condition.

peaks5, wid dis find peaks(array z, width=9,distance

i

intg peaks = np.array(np.zeros(len(peaks5

plant name = np.array(np.zeros(len(peaks5
peak peaks5:
peak no = 1
lower lat = wid dis|'left bases'||[peak no
upper lat = wid dis|'right bases'| | peak no
integ ea peak = np.trapz(array z|lower lat:upper lat
#np.append(intg peaks, integ ea peak, axis=None)

intg peaks = np.roll(intg peaks, - intg peaks!| - integ ea peak
i+
plant name = np.roll(plant name, - plant name/ - + 1 #row 1

is called 10000
intg peaks #output the array of integrals of all peaks detected

array([12427.5, 7500.5])

Final Output

Using all the previous we can have a very good overview on the plants, their real position, their state,
their real heights, and automatically naming them:

array x[peaks5] #Horizontal position in mm of those found peaks
array([296., 253.])

And arranging all of them together in a pandas dataframe:

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last

;822}8;/31 amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

02:44

plant dataset = pd.DataFrame({'plant name': plant name, 'plant position':
array x|[peaks5], 'plant height': array z|[peaks5], 'plant peak intg':

intg peaks}!, columns=|'plant name'’

‘plant position', 'plant height', 'plant peak intg']).set index('plant name'
plant dataset.to csv("../CSV files/plants.csv"

plant dataset

plant name plant position plant height plant peak intg
10001.0 296.0 185.0 12427.5
10002.0 253.0 200.0 7500.5

Enhancing the If-Condition for Better Plant Recognition

To enhance the condition for recognizing plants more accurately, we need to implement peak
detection logic and replace the older one; to ensure only true plants are detected. This approach
reduces the likelihood of false positives caused by objects with heights above 120 mm even as
mentioned earlier and help creating an automated system that keeps track of the plants.

Enhancing the If-Condition for Better Plant Recognition

To enhance the condition for recognizing plants more accurately, we need to implement peak
detection logic and replace the older one; to ensure only true plants are detected. This approach
reduces the likelihood of false positives caused by objects with heights above 120 mm even as
mentioned earlier and helps create an automated system that keeps track of the plants.

In order to implement this, testing the time required to detect plants' peaks through a full array by
find_peaks is crucial.

This was tested on our array of 870 elements detecting the two peaks by the following line of
command in the peak detecting step:

Measure the time taken to find peaks in the array
%%stime #outputs the processing time

Find peaks in the array 'array z' with a specified width and distance
between peaks
peaks5, wid dis = find peaks(array z, width=9,distance

CPU times: total: O ns
Wall time: O ns

Note: The processing time changes if we have to plot every time, which in our application, we used
the faster bgplot modules, but regardless:

Measure the time taken to find peaks in the array
%%time #outputs the processing time

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 37/42 Irrigation Cart Nozzle

Find peaks in the array 'array z' with a specified width and distance
between peaks

peaks5, wid dis = find peaks(array z, width=9,distance=50

Plot the original data with the detected peaks
plt.plot(peaks5, array z|peaks5 "vg"
plt.plot(array z
plt.legend(['width + distance’

CPU times: total: 15.6 ms
Wall time: 55.1 ms

but

Measure the time taken to plot the results
%%stime #outputs the processing time

Plot the original data with the detected peaks
plt.plot(peaks5, array z|peaks5 "vg"
plt.plot(array z

plt.legend(['width + distance'

CPU times: total: 15.6 ms
Wall time: 54.4 ms

Confirming that all the time spent is in plotting and not searching for the peaks...this suggests that we
can use find_peaks every reading or almost as often without worrying about spamming our hardware.

This was tested with our older real data:

Initialize the arrays and variables for testing with our older real data

N1 870 # Number of elements in the array

z data = np.array(np.zeros (N1 # Initialize with empty arrays (to
resemble the variable we have in our on_message function)

peaks total xposition np.array # Initialize with empty array

peaks last np.array # Initialize with empty array

counter = 0 # Counter to keep track of the number
of readings

counter 2 0 # Secondary counter to keep track of
the number of readings

checker = N1 / 10 # Set to check 10 times every time the

z data array is completely filled

Now check the output and the time of using this in a for-loop that activates for every reading to
model our on_message function

%%stime # Outputs the processing time
Iterate through each element in array z
for 1 in array z:

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

Shift the array to the left by one position
z data np.roll(z data, -1); z datal-1 i # Update the last element
with the current reading
counter += 1 # Increment the counter
counter 2 += 1 # Increment the counter
counter checker:
Find peaks in the z data array with a specified width and distance
between peaks
peaks wd, wid dis = find peaks(z data, width=9,distance=50
len (peaks wd len(peaks last
If the number of detected peaks is greater than the last detected
peaks which indicates a new peak ...
Update the total x positions of the peaks
np.append(peaks total xposition, array x[peaks wd]): Append
the current peak positions (array x[peaks wd]) to the existing peak
positions (peaks total xposition)
np.unique(...): Remove duplicate peak positions from the
appended array
np.sort(...): Sort the peak positions in ascending order
peaks total xposition
np.sort(np.unique(np.append(peaks total xposition, array x|peaks wd
peaks last peaks wd # Update the last detected peaks
counter = 0 # Reset the counter
counter 2 N1:
z data np.array(np.zeros (N1 # Reset the z data array

CPU times: total: O ns
Wall time: 35.8 ms

It may be a bit unnecessary to do the sorting unique check every time/reading for our peak detection
array but again it worked. However, future optimization may be done here.

and the output was the same:

Print the total x positions of the peaks
peaks total xposition

array([253., 296.]1) # Output

Feel encouraged to compare with our last trial on the full array of array_z... it produces the same
output

Structural adjustment by adding a lever

Adding a lever normal to the vertical axis of the cart aligned in the direction of the plants and
attaching the vertical VL53L0X sensor to it... creates a lead from the vertical readings which in return

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 39/42 Irrigation Cart Nozzle

would allow us to detect the peaks on spot and react to it just few centimetres later where the water
nozzle and the rest of the cart is.

arm_sens_lead 300 #mm

i array z:

z data = np.roll(z data, -1);, z datal-1 i
counter += 1

counter 2 += 1

counter checker:
peaks wd, wid dis find peaks(z data, width=9,distance=50
len(peaks wd len(peaks last

Calculate the new peak positions by adding the sensor lead
distance to the current peak positions
np.full(len(array x[peaks wd]), arm sens lead): Creates an
array of the same length as array x[peaks wd],
where every element is equal to arm sens lead (300 mm). This
represents the lead distance for the sensor.
array x[peaks wd]: Retrieves the x positions corresponding to
the detected peaks.
np.add(...): Adds the sensor lead distance to each of the x
positions of the detected peaks.peak positions =
np.add(np.full(len(array x| peaks wd arm_sens_lead
array x| peaks wd
peaks total xposition
np.sort(np.unique(np.append(peaks total xposition,peak positions
peaks last = peaks wd
counter 0
counter 2 N1:
z data np.array(np.zeros (N1l

peaks total xposition
array([553., 596.1])

Assuming the cart is 30 cm behind, then the values-added at this stage are also successful

Enhancing the If-Condition for Better Plant Recognition - Implementation

Now we will move to our on_message function and apply the new findings:

on_message(client, userdata, message):
payload, plotter, out
i, t, t0, x, z, traw, Xxraw, zraw
t data, x data, z data
n_acc, X _acc, z acc , XSC_min, XSc_max
state
peaks total xposition, peaks last
counter, counter 2, checker

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last
update:
2024/07/31
02:44

amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

arm sens lead
data

Parse the received message
payload = message.payload.decode('utf-8'
traw, xraw, zraw = map(float, payload.strip('()').split("',"

i==0):
t0o traw

t traw - tO
x0 - XxXraw
z z0 - zraw

s = f"{i:4d} {t:12.2f} {x:6.2f} {z:6.2f}"
Check if the system is idle and the current x position is at a peak
position
state state.IDLE) & np.isin(x, peaks total xposition):# & (z =
120) if a threshold is needed
client.publish("gw/duese002-1icht", "on"
state state.WATERING
Check if the system is watering and the current x position is not at a
peak position
state state.WATERING) &
np.isin(x,peaks total xposition,invert=True):
client.publish("gw/duese002-licht", "off"
state state.IDLE

#checks if the water is off and the cart position is on a plant
location .. turns it on

#checks if the water is on and the cart position is not on a plant
location (inverts the logic).. turns it off

t data = np.roll(t data, -1); t datal-1 t
X data = np.roll(x data, -1); x datal-1

z data = np.roll(z data, -1); z datal-1 z
data = np.array(|t data, x data, z datal).T

counter += 1

counter checker:
peaks wd, wid dis = find peaks(z data, width=9,distance=50
len (peaks wd len(peaks last

peak positions = np.add(np.full(len(x datalpeaks wd
arm_sens lead), x datalpeaks wd
peaks total xposition

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

2026/01/14 03:18 41/42 Irrigation Cart Nozzle

np.sort(np.unique(np.append(peaks total xposition,peak positions
peaks last = peaks wd
counter

counter 2 N1:

x_data = np.linspace(xsc_min, xsc_max, N1) # reinitialize with
empty arrays

z data np.array(np.zeros (N1l # reinitialize with empty arrays

t data np.array(np.zeros (N1l # reinitialize with empty arrays

plotter.update datal(data

index of x acc array with the x closest to x acc[idx]
idx = int(np.round(x/dx

idx & (idx N2
n_acclidx
z acclidx z
z accl[idx] = (n_acc[idx] * z acc[idx] + z) / (n _acc[idx] + 1)
z acc|idx * z acclidx] + z) /

n acclidx| +
data2 = np.array(|/n_acc, x acc, z accl).T
plotter.update data2(data2

out.append stdout(s + "\n")def on message(client, userdata, message):

V1. Conclusion

This project addresses water scarcity by developing an automated irrigation cart that conserves water
through precise plant detection and targeted watering.

Utilizing VL53L0X sensors and an Arduino, the system accurately monitors plant presence and cart
movement, ensuring efficient water use.

The integration of MQTT for communication and Python for data processing lays the groundwork for
future enhancements, including improved sensors and expanded scalability.

Future enhancements will focus on refining detection algorithms and exploring alternative
communication protocols, including PostgreSQL Dashboards for reliable backups.

Sensors may be replaced in the future with faster detecting ones so that their algorithms may be
easier or more straight forward to accommodate a much larger number of sensors.

Multiplexers most probably will be used for connecting with the multiple number of nozzles for our
system e.q. irrigating 30 rows at the same time. Each of which will have at least a single sensor, and a

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last

;822}8;/31 amc:ss2024:irrigantion_cart_nozzle:start https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

02:44

water nozzle. 30 controlling MOSFETS hence may be connected to our microcontroller plus the 30
sensors.

Further studies are going to be done on the rush in current in case large nozzles will be used .. and 30
of those will mean multiple of that rush in current. Additionally, this further research will be conducted
on managing current surges when using large nozzles might introduce the possibility of implementing
PWM to ensure a smooth startup to mitigate the current spikes.

https://wiki.eolab.de/doku.php?id=eolab:projects:giesswagen:start

VIl. References

¢ Pololu, “VL53L0X-arduino/examples/single/single.ino at master - Pololu/VL53L0X-arduino,”
GitHub, https://github.com/pololu/vI5310x-arduino/blob/master/examples/Single/Single.ino
(accessed Jun. 17, 2024).

e “Find_peaks#,” find_peaks - SciPy v1.14.0 Manual,
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#scipy.signal.
find_peaks (accessed Jul. 09, 2024).

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

Last update: 2024/07/31 02:44

https://student-wiki.eolab.de/ Printed on 2026/01/14 03:18

https://wiki.eolab.de/doku.php?id=eolab:projects:giesswagen:start
https://github.com/pololu/vl53l0x-arduino/blob/master/examples/Single/Single.ino
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#scipy.signal.find_peaks
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#scipy.signal.find_peaks
https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc:ss2024:irrigantion_cart_nozzle:start&rev=1722386649

	Irrigation Cart Nozzle
	I. Introduction and Motivation
	II. Materials
	Project Overview
	Components and Descriptions

	III. Methods and Implementation Details
	Setup
	System Description
	Sensor Setup
	Functional Workflow

	Arduino Code
	Python Code
	Required Libraries
	MQTT Client Setup and Configuration
	Creating an Output Widget for Displaying Decoded MQTT Messages
	Initializing Data and Plot for Plant Profile Scanner
	PlantProfilePlot Class for Dynamic Data Plotting
	Initialize and Update Data Arrays for Plotting
	MQTT Message Callback Function
	MQTT Client Connection Callback Function
	Parameters

	MQTT Client Configuration and Connection Setup

	IV. Results of the first implementation
	Simulation of the system
	Arduino Code Output

	V. Discussion
	Arduino Code Output Issues
	Enhancing Plant Detection - Required

	Enhancing Plant Detection - 2nd Implementation
	Import necessary libraries
	Sinusoidal function with clipping
	Noisy peaks generation
	Peak Detection with Various Parameters Using find_peaks
	Testing on Real Data
	Real data generation and saving
	Data Loading, Preprocessing, and Filtering
	Trial 1:
	Trial 2:
	Trial 3
	Analysing the peaks using the find_peaks parameters
	Final Output
	Enhancing the If-Condition for Better Plant Recognition
	Enhancing the If-Condition for Better Plant Recognition
	Structural adjustment by adding a lever
	Enhancing the If-Condition for Better Plant Recognition - Implementation

	VI. Conclusion
	VII. References

