2026/01/31 18:53 1/19 GieBwagen - Plant Detection

Introduction

Efficient resource management in agriculture and landscaping has become critically important due to
mounting environmental pressures. Two of the most pressing issues are the unnecessary overuse of
water for irrigation—leading to water scarcity and waste—and the excessive application of fertilizers
and chemicals, which infiltrate the soil and contaminate groundwater.

This project addresses these challenges by leveraging real-time, sensor-driven monitoring to optimize
irrigation precisely when and where it's needed. By integrating an ESP32 microcontroller with a
VL53L8CX Time-of-Flight (ToF) sensor, the system can detect the presence and position of plants or
objects in a monitored area. Coupled with instant wireless data transmission and automated control of
watering systems, the setup enables the following environmental benefits:

e Water Conservation: Irrigation is triggered only when the sensor detects plant presence and
proximity, reducing unnecessary watering and helping to preserve scarce water resources.

e Targeted Fertilizer Application: By knowing exactly where and when plants are present, the
system can help guide precise application of fertilizers and reduce runoff—limiting the amount
of chemicals infiltrating natural soil and groundwater.

e Reduced Environmental Footprint: Intelligent control systems such as this not only save
resources but also help reduce the carbon footprint and ecological impacts associated with
traditional, less-efficient agricultural practices.

This project demonstrates how low-cost, network-connected sensors and automation hardware can
contribute to sustainable practices in agriculture, urban gardening, or landscape management. The
following report details both the hardware and software necessary to build the system, so others can
replicate and further adapt it to address environmental needs in their own communities.

Materials and Methods

Materials

e ESP32 Development Board: Primary controller running FreeRTOS.

e VL53L8CX ToF Sensor Module: Delivers 8x8 grid distance measurements for object/plant
detection.

e Push-Button Switch: User input, event annotation.

e LED, relay, or actuator (connected to GPIO7): Controls irrigation.

e Wiring/Breadboard or PCB: For sensor, switch, and actuator connections.
¢ Client computer/device: Receives sensor data via TCP.

e Power Supply: For ESP32 and peripherals.

o Wi-Fi Network: For ESP32 to connect and transmit data.

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29

10:48 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

Pin Assignments

Function ESP32 GPIO|Notes

12C SCL 9 ToF sensor

[2C SDA 8 ToF sensor

ToF sensor reset 5 XSHUT line

Output (Actuator) 7 Controls valve/LED/relay
Input (positioning marks reader) |4 With internal pull-up enabled

Methods

The proposed system integrates an ESP32 microcontroller, a VL53L8CX ToF sensor, actuator control,
and Wi-Fi-based TCP communication in order to enable intelligent, sustainable irrigation. Below, the
implementation approach is detailed in a narrative format, with illustrative code excerpts highlighting
key software components.

System Configuration and Setup

e Wi-Fi Networking

The ESP32 is configured to join an existing Wi-Fi network as a station. Wi-Fi credentials are embedded
in the code, allowing for easy adjustment depending on deployment site:

#define EXAMPLE ESP WIFI SSID "iotlab"
#define EXAMPLE ESP WIFI PASS "iotlabl8"

Connection status is monitored and maintained using ESP-IDF’s event loop and FreeRTOS event
groups. This ensures reliable operation even if the access point is temporarily unavailable:

s wifi event group = xEventGroupCreate

ESP_ERROR CHECK(esp wifi set mode(WIFI MODE STA

ESP_ERROR CHECK(esp wifi set config(WIFI IF STA, &wifi config
ESP_ERROR CHECK(esp wifi start

e TCP Server for Data Streaming

Once connected to Wi-Fi, the ESP32 runs a TCP server on port 5055. This server streams processed
sensor data and event annotations to any client on the local network. The TCP task listens for and
accepts new client connections, and handles connection loss gracefully:

server_sock = socket(AF _INET, SOCK STREAM, IPPROTO IP

bind(server sock, (struct sockaddr server _addr, sizeof(server addr
listen(server sock

// Accept and serve clients

¢ |2C and Sensor Initialization

The VL53L8CX sensor communicates over I2C, using dedicated pins:

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 3/19

GieBwagen - Plant Detection

#define I2C SCL GPIO NUM 9
#define I2C SDA GPIO NUM 8

The code first brings the sensor out of reset via GPIO5 (XSHUT), then initializes it for 8x8 ranging at
10 Hz, ensuring it's ready for environmental monitoring:

Dev.platform.reset gpio = GPIO NUM 5
VL53L8CX Reset Sensor(&(Dev.platform
ret = v15318cx _init(i&Dev

ret = v15318cx set resolution(&Dev, VL53L8CX RESOLUTION 8X8
ret = vl5318cx _set ranging frequency hz(iDev

e Data Acquisition and Plant/Object Detection

Periodically (every 100 ms), the ESP32 queries the VL53L8CX for a new distance frame. Object or

plant detection is performed by comparing each value to the median of the frame, considering any
pixel “close” if it is significantly less than the median (i.e., background distance):

// Compute median as background
int bg = median(distance

// Identify pixels indicating presence (e.g., plant detected)
distanceli bg offset object mask|1i true

A centroid is computed for detected zones, estimating the plant's position beneath the sensor.

e Actuator (Irrigation) Control

If the detected object is centered (i.e., the plant is beneath the sensor), the output GPIO (GPIO7) is
asserted to trigger irrigation; otherwise it remains low, ensuring only occupied zones are watered:

/* central pixels detect presence */

gpio set level (GPIO NUM 7 // Open valve/activate relay

gpio set level(GPIO NUM 7 // Close valve

e Button Handling and Event Annotation

A push-button (GPIO4) enables manual event annotation. Button interrupts are debounced using a
hardware timer for reliability:

gpio_isr handler add(BUTTON PIN, interr_handler, (void*)BUTTON PIN
// In ISR task:

current state
DEBOUNCE_uS

// Send a "mark"

last state timestamp - last change

frame to client

e Data Transmission and Logging

Each sensor frame (including timestamps and any event marks) is immediately transmitted to any
connected client via TCP. The raw data (typically a timestamp and 64 distance readings) can be
HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Ii?)itlgpdate: 2025/07/29 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

received, visualized, and logged using a Python client.

Example packet preparation:

// Prepare buffer for [timestamp][frame]
uint8 t sendbuf([8 FRAME SIZE * 2

memcpy (sendbuf timestamp, 8

memcpy (sendbuf + 8, frame, FRAME SIZE * 2

// Send to client

send(client_sock, sendbuf, sizeof(sendbuf), 0

Software Flow

Written in C using ESP-IDF framework.

e Uses FreeRTOS for multitasking: independent tasks for TCP communication, sensor polling, and
button handling.

e Hardware timer (GPTimer) ensures accurate event timestamps and debouncing.

* All configuration parameters (SSID, pins, thresholds) are user-adjustable.

Complete ESP32 code

#include
#include
#include
#include

<stdbool. h>
<stdlib.h>
<stdio.h>

<string.h>

#include "v15318cx _api.h"
#include "freertos/FreeRT0S.h"
#include "freertos/task.h"
#include "freertos/event groups.h"
#include "esp system.h"
#include "esp wifi.h"

#include "esp event.h"
#include "esp log.h"

#include "nvs flash.h"
#include "esp mac.h"

#include "lwip/err.h"

#include "lwip/sys.h"

#include "lwip/sockets.h"
#include "driver/gptimer.h"
#include "led indicator.h"

#define OUT GPIO GPIO NUM 7
#define BUTTON PIN 4
#define DEBOUNCE uS 100000

https://student-wiki.eolab.de/

Printed on 2026/01/31 18:53

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

2026/01/31 18:53 5/19 GieBwagen - Plant Detection

#define EXAMPLE ESP WIFI SSID "iotlab"
#define EXAMPLE ESP WIFI PASS "iotlabl8"
#define EXAMPLE ESP MAXIMUM RETRY 5

#define TCP_PORT 5055
#define FRAME SIZE 64

static EventGroupHandle t s wifi event group
#define WIFI CONNECTED BIT BITO
#define WIFI FAIL BIT BIT1

static const char *TAG "wifi station"
static int s_retry num = 0

// TCP server global socket

static int client sock 1

static int server_sock 1

static struct sockaddr in client addr

static socklen t client addr len = sizeof(client addr

// VL53L8CX variables

VL53L8CX Configuration Dev

VL53L8CX ResultsData results

esp err_t ret

uintle t frame| FRAME SIZE

uintl6 t mark|[FRAME SIZE 0 ... 63 0

// GPTimer handle
static gptimer handle t gptimer = NULL

int compare(const void *a, const void *b
int*)a int*)b

// Returns median of a 64-element array
int median(int *data
int tmp[64
memcpy (tmp, data, sizeof(tmp
gsort(tmp, 64, sizeof(int compare
tmp[31]; // 32nd element is the median

// Converts 1D index to row, col for 8x8

void idx to rowcol(int idx, int *row, int *col
row idx 8
col idx = 8

// weight: background distance - value (if object), else 0.0
float calculate weight(int value, int bg, int offset, bool *object

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/qsort.html

Last update: 2025/07/29
10:48

amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

offset
true
float

value
object

bg
bg

false
0.0f

object

// Find object centroid from
bool find object center

int *distance //

value

1D (row-major) 64-element array

input: 1D 64-element row-major array

int offset // input: threshold offset from background
float *y c // output: centroid y (0-7, row)

float *x ¢ // output: centroid x (0-7, col)

bool *object mask // output: 64-element array (true if object)

// 1. Find background
int bg = median(distance

// 2. Initialize and calculate weights and mask

float weights|[64 0.0f
bool any object false
int i =0; i <64 i
object mask|i false

weights|i offset
object mask|1i

object mask|i

calculate weight(distance(i|, bg

any object = true

any object
false; // no object detected

// 3. Calculate weighted centroid

float sum y = 0.0f, sum x = 0.0f, sum w = 0.0f
int i =0; 1 < 64 i
weights|i 0.0f
int row, col
idx_to rowcol(i, &row, &col
sum_y float)row * weights|i
sum_x float)col * weights|i
sum w weights|i
y C = sum.y / sum w
X _C = sum X / sum w

true; // object detected, centroid calculated

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 7/19 GieBwagen - Plant Detection

// --- Wi-Fi event handler
static void event handler(void*® arg, esp event base t event base
int32 t event id, void® event data

event base WIFI EVENT event id WIFI EVENT STA START
esp wifi connect
event base WIFI EVENT event id
WIFI EVENT STA DISCONNECTED
s_retry num < EXAMPLE ESP_MAXIMUM RETRY
esp wifi connect
S retry num
ESP_LOGI(TAG, "retry to connect to the AP"

xEventGroupSetBits(s wifi event group, WIFI FAIL BIT

ESP_LOGI(TAG, "connect to the AP fail"
event base IP _EVENT event id IP EVENT STA GOT IP
ip event got ip t* event = event data
ESP LOGI(TAG, "got ip:" IPSTR, IP2STR(&event-=ip info.ip
S retry num
xEventGroupSetBits(s wifi event group, WIFI CONNECTED BIT

void wifi init sta(void

s wifi event group = xEventGroupCreate
ESP_ERROR CHECK(esp netif init

ESP_ERROR CHECK(esp event loop create default
esp netif create default wifi sta

wifi init config t cfg = WIFI INIT CONFIG DEFAULT
ESP_ERROR CHECK(esp wifi init(&cfg

esp _event handler instance t instance any id
esp event handler instance t instance got ip
ESP_ERROR CHECK(esp event handler instance register(WIFI EVENT
ESP_EVENT ANY_ID
event handler
NULL
instance any id
ESP ERROR CHECK(esp event handler instance register(IP EVENT
IP_EVENT STA GOT IP
event handler
NULL
instance got ip

wifi config t wifi config
.Ssta

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

10:48
.ssid = EXAMPLE ESP WIFI SSID
.password = EXAMPLE ESP WIFI PASS
.threshold.authmode = WIFI AUTH WPA2 PSK
ESP_ERROR CHECK(esp wifi set mode(WIFI MODE STA
ESP_ERROR CHECK(esp wifi set config(WIFI IF STA, &wifi config
ESP_ERROR CHECK(esp wifi start
ESP_LOGI(TAG, "wifi init sta finished."
EventBits t bits = xEventGroupWaitBits(s wifi event group
WIFI CONNECTED BIT | WIFI FAIL BIT
pdFALSE
pdFALSE
portMAX DELAY
bits & WIFI CONNECTED BIT
ESP _LOGI(TAG, "connected to ap SSID:%s password:%s"
EXAMPLE ESP WIFI SSID, EXAMPLE ESP WIFI PASS
bits & WIFI FAIL BIT
ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s"
EXAMPLE _ESP _WIFI SSID, EXAMPLE ESP WIFI PASS
ESP_LOGE(TAG, "UNEXPECTED EVENT"
// --- GPTimer Setup ---

void gptimer setup(void

gptimer config t timer config
.Clk src = GPTIMER CLK SRC DEFAULT
.direction = GPTIMER COUNT UP
.resolution hz // 1 MHz = 1 tick per microsecond

ESP ERROR CHECK(gptimer new timer(&timer config, &gptimer
ESP_ERROR CHECK(gptimer enable(gptimer
ESP_ERROR CHECK(gptimer start(gptimer

// --- TCP Server Task ---
void tcp server task(void *“pvParameters

struct sockaddr _in server addr

server _sock = socket(AF INET, SOCK STREAM, IPPROTO IP
server sock
ESP_LOGE("TCP", "Unable to create socket: errno %d", errno
vTaskDelete (NULL

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 9/19 GieBwagen - Plant Detection

int opt
setsockopt(server sock, SOL SOCKET, SO REUSEADDR, &opt, sizeof(opt

server_addr.sin family = AF_INET
server_addr.sin addr.s addr = htonl(INADDR ANY
server_addr.sin port = htons(TCP_PORT

bind(server sock, (struct sockaddr server addr
sizeof(server addr

ESP LOGE("TCP", "Socket unable to bind: errno %d", errno

close(server sock

vTaskDelete (NULL

listen(server sock

ESP_LOGE("TCP", "Error occurred during listen: errno %d", errno
close(server_sock

vTaskDelete (NULL

ESP_LOGI("TCP", "TCP server listening on port %d", TCP_PORT

ESP_LOGI("TCP", "Waiting for client connection..."
client sock = accept(server sock, (struct sockaddr client addr
client addr_ len
client sock
ESP _LOGE("TCP", "Unable to accept connection: errno %d", errno

ESP_LOGI("TCP", "Client connected!"
// Block here until client disconnects; actual sending is done 1in
sensor task

char buf
int len recv(client sock, buf, sizeof(buf), MSG _DONTWAIT
len
ESP_LOGI("TCP", "Client disconnected"
close(client sock
client sock
break

vTaskDelay (pdMS TO TICKS

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Ii?ﬂgpdate: 2025/07/29 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

// --- VL53L8CX Task ---

void v15318cx task(void *pvParameters
uint8 t isReady
bool nozzel state = true

ret = v15318cx _check data ready(&Dev, &isReady
ret ESP OK isReady
v15318cx get ranging data(&Dev results
int i i FRAME SIZE i
frame|i
results.distance mm[VL53L8CX NB TARGET PER ZONE*1i

// Get timestamp from GPTimer
uint64 t timestamp

gptimer get raw count(gptimer, ×tamp); // 1 tick = 1
microsecond[1][2][5]

// Prepare buffer: [timestamp][frame]

uint8 t sendbuf FRAME SIZE
memcpy (sendbuf timestamp
memcpy (sendbuf frame, FRAME SIZE
frame frame frame
frame nozzel state

gpio set level (OUT GPIO
ESP_LOGI("GPIO TEST", "GPIO set to HIGH"
nozzel state = false

frame frame frame
frame nozzel state
gpio set level (OUT GPIO
ESP_LOGI("GPIO TEST", "GPIOs set to LOW"
nozzel state = true

// Send to TCP client if connected

client sock

int to _send = sizeof(sendbuf

int sent send(client sock, sendbuf, to send
sent
ESP_LOGE("TCP", "Send failed: errno %d", errno
close(client sock
client sock

//vTaskDelay(pdMS TO TICKS(100)); // 10Hz

void config gpio

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

2026/01/31 18:53 11/19 GieBwagen - Plant Detection

gpio config t io conf
.pin_bit mask 1ULL BUTTON PIN
.mode = GPIO MODE INPUT
.intr type = GPIO INTR NEGEDGE
.pull up en

gpio config(&io conf

gpio config t out conf
.pin bit mask 1ULL OUT GPIO
.mode = GPIO MODE OUTPUT

gpio config(&out conf
static QueueHandle t interr queue = NULL

void IRAM ATTR interr handler(void* arg
uint32 t pin uint32 t) arg
xQueueSendFromISR(interr queue, &pin, NULL

static uint64 t last change
static int last state // Asssuming pull-up: 1 = no pressed, 0 = pressed

void task pin reading(void*® params
uint32 t pin_received

XQueueReceive(interr queue, &pin received, portMAX DELAY
// Read pin state
int current state = gpio get level(pin received
// Get timestamp from GPTimer
uint64 t timestamp
gptimer get raw count(gptimer, ×tamp); // 1 tick = 1
microsecond[1][2][5]
// If the state has changed and enough time has passed
current state last state timestamp
last change DEBOUNCE_uS
last state
last change = timestamp
// Prepare buffer: [timestamp][frame]

uint8 t sendbuf FRAME SIZE
memcpy (sendbuf, ×tamp
memcpy (sendbuf mark, FRAME SIZE

// Send to TCP client if connected

client sock

int to_send = sizeof(sendbuf

int sent = send(client sock, sendbuf, to send
sent
ESP LOGE("TCP", "Send failed: errno %d", errno
close(client sock
client sock

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

Last update: 2025/07/29

10:48 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

current state last state
last state
last change = timestamp

void app main(void
config gpio

// create queue for 10 events
interr _queue = xQueueCreate sizeof(uint32 t

// install service for ISR
gpio install isr service
gpio isr handler add(BUTTON PIN, interr handler, (void®)BUTTON PIN

//Initialize NVS
esp err t ret = nvs flash init
ret ESP_ERR NVS NO FREE PAGES ret
ESP_ERR NVS NEW VERSION FOUND
ESP ERROR CHECK(nvs flash erase
ret = nvs flash init

ESP_ERROR CHECK(ret

ESP_LOGI(TAG, "ESP WIFI MODE STA"
wifi init sta

// Setup GPTimer
gptimer setup

//Define the i2c bus configuration
i2c_port t i2c port = I2C NUM 1
i2c master bus config t i2c mst config
.clk source = I2C CLK SRC DEFAULT
.12c port i2c _port
.scl_io num
.sda io num
.glitch _ignore cnt
.flags.enable internal pullup = true

i2c master bus handle t bus handle
ESP_ERROR CHECK(i2c new master bus(&i2c mst config, &bus handle

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 13/19 GieBwagen - Plant Detection

//Define the 1i2c device configuration

i2c_device config t dev cfg
.dev_addr length = I2C_ADDR BIT LEN 7
.device address = VL53L8CX DEFAULT I2C ADDRESS
.scl speed hz = VL53L8CX MAX CLK SPEED

Dev.platform.bus config = i2c_mst config
i2c master bus add device(bus handle, &dev cfg, &Dev.platform.handle

Dev.platform.reset gpio = GPIO NUM 5
VL53L8CX Reset Sensor(&(Dev.platform

uint8 t isAlive
ret = v15318cx _is alive(iDev, &isAlive
isAlive ret ESP 0K

printf("VL53L8CX not detected at requested address\n"

ret = v15318cx init(&Dev
ret ESP _OK
printf("Sensor init failed: %d\n", ret

ret = v15318cx _set resolution(&Dev, VL53L8CX RESOLUTION 8X8
ret ESP _OK
printf("Set resolution failed: %d\n", ret

printf("VL53L8CX ULD ready ! (Version : %s)\n", VL53L8CX API REVISION

ret = v15318cx _set ranging frequency hz(&Dev
ret ESP OK
printf("Set ranging frequency failed: %d\n", ret

ret = v15318cx _set sharpener percent(&iDev
ret ESP _OK
printf("Set sharpener percent failed: %d\n", ret

ret = v15318cx _set target order(&iDev, VL53L8CX TARGET ORDER STRONGEST
ret ESP OK
printf("Set target order failed: %d\n", ret

ret = v15318cx start ranging(&Dev
ret ESP _OK

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2025/07/29 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

10:48
printf("Set start ranging failed: %d\n", ret
// Start TCP server and sensor tasks
xTaskCreate(tcp server task, "tcp server", 4096, NULL, 5, NULL
xTaskCreate(v1l5318cx task, "vl5318cx task", 6144, NULL, 5, NULL
xTaskCreate(task pin reading, "pin reading", 2048, NULL, 5, NULL
Assembly

e Wire the ESP32 to the VL53L8CX using 12C (SCL: 9, SDA: 8) and sensor XSHUT to GPIO5.
e Connect button to GPIO4 (with internal or external pull-up to 3.3V).

e Connect actuator (e.g., relay valve) control input to GPIO7.

e Flash the ESP32 with the provided code, making any adjustments for your setup.

e Start ESP32; ensure it connects to Wi-Fi.

e Connect a client to ESP32's IP on TCP port 5055 to view or log streaming data.

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/01/31 18:53 15/19 GieBwagen - Plant Detection

Client Software for Data Reception and Visualization

A fully functional Python client application logs incoming data and visualizes it as a heatmap in real
time:

e Raw Data Reception: Receives packets of 136 bytes each (64 x 2-byte sensor readings + 8
bytes timestamp) from the ESP32 over a TCP socket.

e Data Logging: Writes each received frame with microsecond-precision timestamps to a CSV file
for later analysis.

e Live Visualization: Uses Matplotlib (embedded in Tkinter) to display a color-mapped 8x8
(upscaled to 64x64) heatmap of the measured distances.

e Threading/Concurrency: Uses a background thread to handle data reception without blocking
the GUI.

e Safe Shutdown: Ensures sockets and files are properly closed when the application exits.

socket
struct
csv
tkinter tk
matplotlib.backends.backend tkagg FigureCanvasTkAgg
matplotlib.pyplot plt
numpy np
scipy.ndimage zoom
threading
ESP32 IP = "192.168.2.189" # Set your ESP32 IP address
ESP32 PORT
CSV_FILENAME "v15318cx _data.csv"
FRAME SIZE + * # 8 bytes timestamp + 128 bytes frame data
UPSCALE FACTOR # For smooth 8x8 -> 64x64 heatmap

latest matrix = None
latest timestamp = None
lock = threading.Lock

re range(pMatrix):
pMatrix np.array(pMatrix
nMax pMatrix.max
rat nMax / nMax
r matrix = pMatrix / rat

r matrix.astype(int

data receiver(sock, writer, csvfile):
latest matrix, latest timestamp
True:
data = b"'
len(data FRAME SIZE:

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29

10:48 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

packet = sock.recv(FRAME SIZE - len(data
socket.timeout:

packet:
"Connection closed by ESP32."

data += packet
timestamp us struct.unpack('<Q', data
distances struct.unpack('<64H', data
matrix np.array(distances, dtype=np.uintl6).reshape
writer.writerow(| timestamp us| + list(matrix.flatten
csvfile. flush

lock:

latest matrix = matrix

latest timestamp = timestamp us

update gui
lock:
matrix = None latest matrix None latest matrix.copy
timestamp latest timestamp
matrix None:

matrix re_range(matrix

high res matrix = zoom(matrix, UPSCALE FACTOR, order
im.set array(high res matrix

ax.set title(f"Timestamp: {timestamp}"

canvas.draw

root.after update gui) # 10 Hz refresh rate
clean_exit
running

running False

sock.close
Exception:

csvfile.close
Exception:

root.destroy

Socket connection and main setup

sock = socket.create connection((ESP32 IP, ESP32 PORT
sock.settimeout

csvfile = open(CSV_FILENAME, mode='w', newline='"
writer = csv.writer(csvfile

header "timestamp us"] + [f"zone {i}" i range
writer.writerow(header

receiver thread = threading.Thread(target-=data receiver, args=(sock, writer

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 17/19

GieBwagen - Plant Detection

csvfile daemon=True
receiver thread.start

root tk.Tk
root.title("Live Sensor Heatmap"

fig, ax = plt.subplots

im = ax.imshow(np.zeros((8 * UPSCALE FACTOR
cmap='viridis', vmin=0, vmax=5000

canvas FigureCanvasTkAgg(fig, master=root
canvas.get tk widget().pack

close button = tk.Button(root, text="Close"
font=("Arial", 12 fg="red"
close button.pack(pady=10

root.after (100, update gui

root.protocol("WM DELETE WINDOW", clean_exit

root.mainloop

Graphic result

8 * UPSCALE_FACTOR

command=clean_exit

- 600

550

=500

- 450

- 400

036 91215182124273033 36 3942454851 5457 6063

Results

Functional Testing

When the ESP32 is powered and connected to Wi-Fi:

e The VL53L8CX sensor continuously scans its field, providing an 8x8 distance map.

e The ESP32 detects objects (e.g., plant) based on pixels closer than the background by a given

threshold.

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-a%3Astart&media=amc:ss2025:group-a:screenshot_2025-07-29_094906.png

Last update: 2025/07/29

10:48 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

e When an object is close to the central region of the sensor frame (representing a plant directly
under the sensor), GPIO7 is activated—demonstrating selective and efficient irrigation.

e Actuator remains off when no plant is detected or it is not near the center, preventing watering
of bare soil and reducing excessive chemical/fertilizer application.

¢ All sensor frames and button events are timestamped and streamed live to TCP clients for
monitoring or data analysis.

Environmental Impact

e Water Use Reduction: System only waters when plant presence is confirmed and in the
precise location, minimizing waste.

e Reduced Chemical Runoff: As irrigation is limited to when and where needed, less fertilizer is
washed into groundwater.

» Data Gathering: Collected distance/time data supports further optimization, trend analysis,
and integration with weather/fertilization schedules.

Reliability

e Button interrupts reliably send annotated “mark” frames for event logging or manual input.

e The system is resilient to network disconnects, with reconnection and data buffering as
programmed.

Discussion

¢ This system showcases the potential of integrating low-cost sensor networks and automation for
sustainable environmental stewardship:

e Precision Irrigation: Only waters when plant is actually present, avoiding traditional timer-based
schemes that can waste water and leach chemicals.

e Scalability: Multiple ESP32/sensor nodes can be deployed across large fields or greenhouses,
each acting independently but monitored from a central server.

e Customization: Sensor thresholds, actuator logic, and even fertilization scheduling can be
tailored using the streamed data, allowing fine-grained environmental control.

Limitations & Improvements:
e Current system is distance-based; integrating soil moisture or plant health sensors could further

refine watering decisions.

* Wireless reliability is dependent on network strength; alternative protocols (e.g., LoRa) could be
used in rural deployments.

e Data encryption/authentication could be added for more secure remote management.

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 19/19 GieBwagen - Plant Detection

In summary, this project presents a practical, adaptable example of how sensor-driven automation
can help address water and chemical conservation challenges in environmental and agricultural
settings. The design and methods are fully replicable, providing a baseline for further innovation and
environmental impact.

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

Last update: 2025/07/29 10:48

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753778932

	[Introduction]
	[Introduction]
	Introduction

	Materials and Methods
	Materials

	Pin Assignments
	Methods
	System Configuration and Setup
	Software Flow
	Complete ESP32 code
	Assembly
	Client Software for Data Reception and Visualization

	Results
	Functional Testing
	Environmental Impact
	Reliability
	Discussion
	Limitations & Improvements:

