2026/01/31 18:53 1/22 GieBwagen - Plant Detection

GiefRwagen - Plant Detection

By Dylan Elian Huete Arbizu (35120)

Introduction

Efficient resource management in agriculture and landscaping has become critically important due to
mounting environmental pressures. Two of the most pressing issues are the unnecessary overuse of
water for irrigation—leading to water scarcity and waste—and the excessive application of fertilizers
and chemicals, which infiltrate the soil and contaminate groundwater.

This project addresses these challenges by leveraging real-time, sensor-driven monitoring to optimize
irrigation precisely when and where it's needed. By integrating an ESP32 microcontroller with a
VL53L8CX Time-of-Flight (ToF) sensor, the system can detect the presence and position of plants or
objects in a monitored area. Coupled with instant wireless data transmission and automated control of
watering systems, the setup enables the following environmental benefits:

e Water Conservation: Irrigation is triggered only when the sensor detects plant presence and
proximity, reducing unnecessary watering and helping to preserve scarce water resources.

e Targeted Fertilizer Application: By knowing exactly where and when plants are present, the
system can help guide precise application of fertilizers and reduce runoff—limiting the amount
of chemicals infiltrating natural soil and groundwater.

* Reduced Environmental Footprint: Intelligent control systems such as this not only save
resources but also help reduce the carbon footprint and ecological impacts associated with
traditional, less-efficient agricultural practices.

This project demonstrates how low-cost, network-connected sensors and automation hardware can
contribute to sustainable practices in agriculture, urban gardening, or landscape management. The
following report details both the hardware and software necessary to build the system, so others can
replicate and further adapt it to address environmental needs in their own communities.

Materials and Methods

Materials

e ESP32 Development Board: Primary controller running FreeRTOS.

e VL53L8CX ToF Sensor Module: Delivers 8x8 grid distance measurements for object/plant
detection.

e Push-Button Switch: User input, event annotation.
e LED, relay, or actuator (connected to GPIO7): Controls irrigation.
e Wiring/Breadboard or PCB: For sensor, switch, and actuator connections.

¢ Client computer/device: Receives sensor data via TCP.

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29

14:58 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

e Power Supply: For ESP32 and peripherals.

o Wi-Fi Network: For ESP32 to connect and transmit data.

Pin Assignments

Function ESP32 GPIO|Notes

12C SCL 9 ToF sensor

I12C SDA 8 ToF sensor

ToF sensor reset 5 XSHUT line

Output (Actuator) 7 Controls valve/LED/relay
Input (positioning marks reader) |4 With internal pull-up enabled

Methods

The proposed system integrates an ESP32 microcontroller, a VL53L8CX ToF sensor, actuator control,
and Wi-Fi-based TCP communication in order to enable intelligent, sustainable irrigation. Below, the
implementation approach is detailed in a narrative format, with illustrative code excerpts highlighting
key software components.

System Configuration and Setup

e Wi-Fi Networking

The ESP32 is configured to join an existing Wi-Fi network as a station. Wi-Fi credentials are embedded
in the code, allowing for easy adjustment depending on deployment site:

#define EXAMPLE ESP WIFI SSID "iotlab"
#define EXAMPLE ESP WIFI PASS "iotlabl8"

Connection status is monitored and maintained using ESP-IDF’s event loop and FreeRTOS event
groups. This ensures reliable operation even if the access point is temporarily unavailable:

s wifi event group = xEventGroupCreate

ESP _ERROR CHECK(esp wifi set mode(WIFI MODE STA

ESP_ERROR CHECK(esp wifi set config(WIFI IF STA, &wifi config
ESP_ERROR CHECK(esp wifi start

e TCP Server for Data Streaming

Once connected to Wi-Fi, the ESP32 runs a TCP server on port 5055. This server streams processed
sensor data and event annotations to any client on the local network. The TCP task listens for and
accepts new client connections, and handles connection loss gracefully:

server_sock = socket(AF INET, SOCK STREAM, IPPROTO IP
bind(server sock, (struct sockaddr server _addr, sizeof(server addr
listen(server sock

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 3/22

GieBwagen - Plant Detection

// Accept and serve clients

¢ |2C and Sensor Initialization

The VL53L8CX sensor communicates over I2C, using dedicated pins:

#define I2C SCL GPIO NUM 9
#define I2C SDA GPIO NUM 8

The code first brings the sensor out of reset via GPIO5 (XSHUT), then initializes it for 8x8 ranging at
10 Hz, ensuring it's ready for environmental monitoring:

Dev.platform.reset gpio = GPIO NUM 5
VL53L8CX Reset Sensor(&(Dev.platform
ret = v15318cx _init(&Dev

ret = v15318cx set resolution(&Dev, VL53L8CX RESOLUTION 8X8
ret = v15318cx _set ranging frequency hz(iDev

e Data Acquisition and Plant/Object Detection

Periodically (every 100 ms), the ESP32 queries the VL53L8CX for a new distance frame. Object or

plant detection is performed by comparing each value to the median of the frame, considering any
pixel “close” if it is significantly less than the median (i.e., background distance):

// Compute median as background
int bg = median(distance

// Identify pixels indicating presence (e.g., plant detected)

distancel1 bg - offset object mask|1i true

A centroid is computed for detected zones, estimating the plant's position beneath the sensor.

e Actuator (Irrigation) Control

If the detected object is centered (i.e., the plant is beneath the sensor), the output GPIO (GPIO7) is
asserted to trigger irrigation; otherwise it remains low, ensuring only occupied zones are watered:

/* central pixels detect presence */

gpio set level (GPIO NUM 7 // Open valve/activate relay

gpio set level (GPIO NUM 7 // Close valve

e Button Handling and Event Annotation

A push-button (GPIO4) enables manual event annotation. Button interrupts are debounced using a
hardware timer for reliability:

gpio_isr handler add(BUTTON PIN, interr_handler, (void*)BUTTON PIN
// In ISR task:

current state
DEBOUNCE_uS

// Send a "mark"

last state timestamp - last change

frame to client

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Iiéf;gpdate: 2025/07/29 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

e Data Transmission and Logging

Each sensor frame (including timestamps and any event marks) is immediately transmitted to any
connected client via TCP. The raw data (typically a timestamp and 64 distance readings) can be
received, visualized, and logged using a Python client.

Example packet preparation:

// Prepare buffer for [timestamp][frame]
uint8 t sendbuf(8 + FRAME SIZE * 2

memcpy (sendbuf, ×tamp, 8

memcpy (sendbuf 8, frame, FRAME SIZE 2

// Send to client

send(client sock, sendbuf, sizeof(sendbuf), 0

Software Flow

Written in C using ESP-IDF framework.

¢ Uses FreeRTOS for multitasking: independent tasks for TCP communication, sensor polling, and
button handling.

e Hardware timer (GPTimer) ensures accurate event timestamps and debouncing.

e All configuration parameters (SSID, pins, thresholds) are user-adjustable.

Complete ESP32 code

#include <stdbool.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "v15318cx _api.h"
#include "freertos/FreeRT0S.h"
#include "freertos/task.h"
#include "freertos/event groups.h"
#include "esp system.h"
#include "esp wifi.h"

#include "esp event.h"
#include "esp log.h"

#include "nvs flash.h"
#include "esp mac.h"

#include "lwip/err.h"

#include "lwip/sys.h"

#include "lwip/sockets.h"
#include "driver/gptimer.h"
#include "led indicator.h"

https://student-wiki.eolab.de/

Printed on 2026/01/31 18:53

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

2026/01/31 18:53 5/22

GieBwagen - Plant Detection

#define OUT GPIO GPIO NUM 7
#define BUTTON PIN 4
#define DEBOUNCE uS 100000

#define EXAMPLE ESP WIFI SSID "iotlab"
#define EXAMPLE ESP WIFI PASS "iotlabl8"
#define EXAMPLE ESP MAXIMUM RETRY 5

#define TCP_PORT 5055
#define FRAME SIZE 64

static EventGroupHandle t s wifi event group
#define WIFI CONNECTED BIT BITO
#define WIFI FAIL BIT BIT1

static const char *TAG = "wifi station"
static int s_retry num = 0

// TCP server global socket

static int client sock 1

static int server_sock 1

static struct sockaddr _in client addr

static socklen t client addr len = sizeof(client addr

// VL53L8CX variables

VL53L8CX Configuration Dev

VL53L8CX ResultsData results

esp err_t ret

uintle t frame| FRAME SIZE

uintl6 t mark!FRAME SIZE @ ... 63 0

// GPTimer handle
static gptimer handle t gptimer = NULL

int compare(const void *a, const void *b
return int*)a int*)b

// Returns median of a 64-element array
int median(int *data
int tmp[64
memcpy (tmp, data, sizeof(tmp
gsort(tmp, 64, sizeof(int compare
return tmp[31]; // 32nd element is the median

// Converts 1D index to row, col for 8x8
void idx to rowcol(int idx, int *“row, int *col

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/qsort.html

Last update: 2025/07/29

14:58 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

row idx 8
col idx 8

// weight: background distance - value (if object), else 0.0
float calculate weight(int value, int bg, int offset, bool *object
value < bg - offset
object true
float) (bg - value

object false
0.0f

// Find object centroid from 1D (row-major) 64-element array
bool find object center

int *distance // Input: 1D 64-element row-major array

int offset // input: threshold offset from background
float *y c // output: centroid y (0-7, row)

float *x c // output: centroid x (0-7, col)

bool “object mask // output: 64-element array (true if object)

// 1. Find background
int bg = median(distance

// 2. Initialize and calculate weights and mask
float weights|[64 0.0f
bool any object false

int i =0; 1< 64 i
object mask|i false
weights|i calculate weight(distance(il, bg, offset
object mask|1i
object mask|[i!) any object = true

any object
false; // no object detected

// 3. Calculate weighted centroid
float sum y = 0.0f, sum x = 0.0f, sum w = 0.0f
int i =0; 1 < 64 i
weights|i 0.0f
int row, col
idx_to rowcol(i, &row, &col

sum_y float)row * weights|i
sum_Xx float)col * weights|i
sum w weights|i

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 7/22 GieBwagen - Plant Detection

y C sum y / sum w
X _C sum X / sum w
true; // object detected, centroid calculated
// --- Wi-Fi event handler

static void event handler(void*® arg, esp event base t event base
int32 t event id, void*® event data

event base WIFI EVENT event id WIFI EVENT STA START
esp wifi connect
event base WIFI EVENT event id
WIFI EVENT STA DISCONNECTED
s _retry num < EXAMPLE ESP_MAXIMUM RETRY
esp wifi connect
s retry num
ESP_LOGI(TAG, "retry to connect to the AP"

xEventGroupSetBits(s wifi event group, WIFI FAIL BIT

ESP_LOGI(TAG, "connect to the AP fail"
event base IP_EVENT event id IP EVENT STA GOT IP
ip event got ip t* event = event data
ESP LOGI(TAG, "got ip:" IPSTR, IP2STR(&event-=ip info.ip
s retry num
xEventGroupSetBits(s wifi event group, WIFI CONNECTED BIT

void wifi init sta(void

s wifi event group = xEventGroupCreate
ESP_ERROR CHECK(esp netif init

ESP_ERROR CHECK(esp event loop create default
esp netif create default wifi sta

wifi init config t cfg = WIFI INIT CONFIG DEFAULT
ESP_ERROR CHECK(esp wifi init(&cfg

esp_event handler instance t instance any id

esp _event handler instance t instance got ip

ESP_ERROR CHECK(esp event handler instance register(WIFI EVENT
ESP_EVENT ANY ID
event handler
NULL

instance any id

ESP_ERROR CHECK(esp event handler instance register(IP_EVENT

IP_EVENT STA GOT IP

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

14:58
event handler
NULL
instance got ip
wifi config t wifi config
.Sta
.ssid = EXAMPLE ESP WIFI SSID
.password = EXAMPLE ESP WIFI PASS
.threshold.authmode = WIFI AUTH WPA2 PSK
ESP_ERROR CHECK(esp wifi set mode(WIFI MODE STA
ESP_ERROR CHECK(esp wifi set config(WIFI IF STA, &wifi config
ESP_ERROR CHECK(esp wifi start
ESP_LOGI(TAG, "wifi init sta finished."
EventBits t bits = xEventGroupWaitBits(s wifi event group
WIFI CONNECTED BIT | WIFI FAIL BIT
pdFALSE
pdFALSE
portMAX DELAY
bits & WIFI CONNECTED BIT
ESP_LOGI(TAG, "connected to ap SSID:%s password:%s"
EXAMPLE_ESP WIFI SSID, EXAMPLE ESP WIFI PASS
bits & WIFI FAIL BIT
ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s"
EXAMPLE_ESP_WIFI SSID, EXAMPLE ESP WIFI PASS
ESP_LOGE(TAG, "UNEXPECTED EVENT"
// --- GPTimer Setup ---

void gptimer setup(void

gptimer config t timer config
.clk src = GPTIMER CLK SRC DEFAULT
.direction = GPTIMER COUNT UP
.resolution hz // 1 MHz = 1 tick per microsecond

ESP_ERROR CHECK(gptimer new timer(&timer config, &gptimer
ESP_ERROR CHECK(gptimer enable(gptimer
ESP_ERROR CHECK(gptimer start(gptimer

// --- TCP Server Task ---
void tcp server task(void *“pvParameters

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 9/22 GieBwagen - Plant Detection

struct sockaddr _in server addr

server_sock = socket(AF INET, SOCK STREAM, IPPROTO IP
server _sock
ESP LOGE("TCP", "Unable to create socket: errno %d", errno
vTaskDelete (NULL

int opt
setsockopt(server sock, SOL SOCKET, SO REUSEADDR, &opt, sizeof(opt

server_addr.sin family = AF_INET
server_addr.sin addr.s addr = htonl(INADDR ANY
server _addr.sin port = htons(TCP_PORT

bind(server sock, (struct sockaddr server addr
sizeof(server addr

ESP LOGE("TCP", "Socket unable to bind: errno %d", errno

close(server sock

vTaskDelete (NULL

listen(server sock

ESP _LOGE("TCP", "Error occurred during listen: errno %d", errno
close(server sock

vTaskDelete (NULL

ESP_LOGI("TCP", "TCP server listening on port %d", TCP_PORT

ESP_LOGI("TCP", "Waiting for client connection..."
client sock = accept(server sock, (struct sockaddr client addr
client addr len
client sock
ESP_LOGE("TCP", "Unable to accept connection: errno %d", errno

ESP_LOGI("TCP", "Client connected!"
// Block here until client disconnects; actual sending is done 1in
sensor task

char buf
int len recv(client sock, buf, sizeof(buf), MSG DONTWAIT
len
ESP LOGI("TCP", "Client disconnected"
close(client sock
client sock

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Ii?f;gpdate: 2025/07/29 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

break

vTaskDelay (pdMS TO TICKS

// --- VL53L8CX Task ---

void v15318cx task(void *pvParameters
uint8 t isReady
bool nozzel state = true

ret = v15318cx check data ready(&Dev, &isReady
ret ESP OK isReady
v15318cx get ranging data(&Dev results
int 1 i < FRAME_SIZE i
frameli
results.distance mm[VL53L8CX NB TARGET PER ZONE*1i

// Get timestamp from GPTimer

uint64 t timestamp

gptimer get raw count(gptimer, ×tamp); // 1 tick = 1
microsecond[1][2][5]

// Prepare buffer: [timestamp][frame]

uint8 t sendbuf FRAME SIZE
memcpy (sendbuf timestamp
memcpy (sendbuf frame, FRAME SIZE
frame frame frame
frame nozzel state

gpio set level (OUT GPIO
ESP_LOGI("GPIO TEST", "GPIO set to HIGH"
nozzel state = false

frame frame frame
frame nozzel state
gpio set level (OUT GPIO
ESP_LOGI("GPIO TEST", "GPIOs set to LOW"
nozzel state = true

// Send to TCP client if connected

client sock

int to send = sizeof(sendbuf

int sent = send(client sock, sendbuf, to send
sent
ESP LOGE("TCP", "Send failed: errno %d", errno
close(client sock
client sock

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

2026/01/31 18:53 11/22

GieBwagen - Plant Detection

//vTaskDelay(pdMS TO TICKS(100)); // 10Hz

void config gpio
gpio config t io conf
.pin _bit mask 1ULL
.mode = GPIO MODE INPUT
.intr type = GPIO INTR NEGEDGE
.pull up en 1

gpio config(&io conf
gpio config t out conf
.pin bit mask 1ULL

.mode = GPIO MODE OUTPUT
gpio config(&out conf
static QueueHandle t interr queue = NULL
void IRAM ATTR interr handler(void* arg
uint32 t pin uint32 t) arg
xQueueSendFromISR(interr queue, &pin

static uint64 t last change = 0
static int last state

void task pin reading(void*® params
uint32 t pin_received
1
XQueueReceive(interr queue
// Read pin state
int current state

uint64 t timestamp = 0

gptimer get raw count(gptimer

microsecond[1][2][5]

OUT GPIO

1; // Asssuming pull-up: 1 =

BUTTON PIN

NULL

no pressed, 0 = pressed

pin received, portMAX DELAY

gpio get level(pin received
// Get timestamp from GPTimer

timestamp); // 1 tick =1

// If the state has changed and enough time has passed

current state 0
DEBOUNCE_uS
last state = 0O
last change

last change

timestamp

last state 1

timestamp

// Prepare buffer: [timestamp][frame]

uint8 t sendbuf[8
memcpy (sendbuf
memcpy (sendbuf

FRAME SIZE * 2
timestamp, 8
8, mark, FRAME SIZE * 2

// Send to TCP client if connected

client sock 0
int to send

sizeof (sendbuf

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html
http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

Last update: 2025/07/29

14:58 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

int sent = send(client sock, sendbuf, to send
sent
ESP LOGE("TCP", "Send failed: errno %d", errno
close(client sock
client sock

current state last state
last state
last change = timestamp

void app main(void
config gpio

// create queue for 10 events
interr _queue = xQueueCreate sizeof(uint32 t

// install service for ISR
gpio _install isr service
gpio isr handler add(BUTTON PIN, interr handler, (void®)BUTTON PIN

//Initialize NVS
esp err_t ret = nvs flash init
ret ESP_ERR NVS NO FREE PAGES ret
ESP_ERR NVS NEW VERSION FOUND
ESP_ERROR CHECK(nvs flash erase
ret = nvs flash init

ESP_ERROR CHECK(ret

ESP _LOGI(TAG, "ESP WIFI MODE STA"
wifi init sta

// Setup GPTimer
gptimer setup

//Define the i2c bus configuration
i2c_port t i2c port = I2C NUM 1
i2c master bus config t i2c mst config
.clk source = I2C CLK SRC DEFAULT
.12c port i2c _port
.scl_io num
.sda _io num
.glitch ignore cnt

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 13/22 GieBwagen - Plant Detection

.flags.enable internal pullup = true

i2c _master bus handle t bus handle
ESP ERROR CHECK(i2c new master bus(&i2c mst config bus handle

//Define the 1i2c device configuration

i2c _device config t dev cfg
.dev_addr length = I2C ADDR BIT LEN 7
.device address = VL53L8CX DEFAULT I2C ADDRESS
.scl speed hz = VL53L8CX MAX CLK SPEED

Dev.platform.bus config = i2c_mst config

i2c master bus add device(bus handle, &dev cfg, &Dev.platform.handle

Dev.platform.reset gpio = GPIO NUM 5
VL53L8CX Reset Sensor(&(Dev.platform

uint8 t isAlive
ret = v15318cx is alive(iDev, &isAlive
isAlive ret ESP 0K

printf("VL53L8CX not detected at requested address\n"

ret = v15318cx _init(&Dev
ret ESP _OK
printf("Sensor init failed: %d\n", ret

ret = v15318cx _set resolution(&Dev, VL53L8CX RESOLUTION 8X8
ret ESP OK
printf("Set resolution failed: %d\n", ret

printf ("VL53L8CX ULD ready ! (Version : %s)\n", VL53L8CX API REVISION

ret = v15318cx _set ranging frequency hz(&Dev
ret ESP OK
printf("Set ranging frequency failed: %d\n", ret

ret = v15318cx _set sharpener percent(iDev
ret ESP OK
printf("Set sharpener percent failed: %d\n", ret

ret = v15318cx set target order(&Dev, VL53L8CX TARGET ORDER STRONGEST

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2025/07/29

amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

14:58
ret ESP OK
printf("Set target order failed: %d\n", ret
ret = v15318cx start ranging(&Dev
ret ESP OK
printf("Set start ranging failed: %d\n", ret
// Start TCP server and sensor tasks
xTaskCreate(tcp server_task, "tcp server" NULL NULL
xTaskCreate(v1l5318cx task, "vI15318cx task" NULL NULL
xTaskCreate(task pin reading, "pin reading" NULL NULL
Assembly

e Start ESP32; ensure it connects to Wi-Fi.

Circuit diagram

e Wire the ESP32 to the VL53L8CX using 12C (SCL: 9, SDA: 8) and sensor XSHUT to GPIO5.
e Connect button to GPIO4 (with internal or external pull-up to 3.3V).
e Connect actuator (e.g., relay valve) control input to GPIO7.

e Flash the ESP32 with the provided code, making any adjustments for your setup.

e Connect a client to ESP32's IP on TCP port 5055 to view or log streaming data.

https://student-wiki.eolab.de/

Printed on 2026/01/31 18:53

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/01/31 18:53 15/22 GieBwagen - Plant Detection

Client Software for Data Reception and Visualization

A fully functional Python client application logs incoming data and visualizes it as a heatmap in real
time:

e Raw Data Reception: Receives packets of 136 bytes each (64 x 2-byte sensor readings + 8
bytes timestamp) from the ESP32 over a TCP socket.

e Data Logging: Writes each received frame with microsecond-precision timestamps to a CSV file
for later analysis.

e Live Visualization: Uses Matplotlib (embedded in Tkinter) to display a color-mapped 8x8
(upscaled to 64x64) heatmap of the measured distances.

e Threading/Concurrency: Uses a background thread to handle data reception without blocking
the GUI.

e Safe Shutdown: Ensures sockets and files are properly closed when the application exits.

socket
struct
csv
tkinter tk
matplotlib.backends.backend tkagg FigureCanvasTkAgg
matplotlib.pyplot plt
numpy np
scipy.ndimage zoom

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

14:58
threading
ESP32 IP "192.168.2.189" # Set your ESP32 IP address
ESP32 PORT
CSV_FILENAME "v15318cx data.csv"
FRAME SIZE + * # 8 bytes timestamp + 128 bytes frame data
UPSCALE_ FACTOR # For smooth 8x8 -> 64x64 heatmap

latest matrix = None
latest timestamp = None
lock = threading.Lock

re range(pMatrix):
pMatrix np.array(pMatrix
nMax pMatrix.max
rat nMax / nMax
r matrix = pMatrix / rat

r matrix.astype(int

data receiver(sock, writer, csvfile):
latest matrix, latest timestamp
True:
data = b"'
len(data FRAME SIZE:

packet sock.recv(FRAME SIZE - len(data
socket.timeout:

packet:
"Connection closed by ESP32."

data +- packet
timestamp us struct.unpack('<Q', data
distances struct.unpack('<64H', data
matrix np.array(distances, dtype=np.uintl6).reshape
writer.writerow(|timestamp us| + list(matrix.flatten
csvfile.flush

lock:

latest matrix = matrix

latest timestamp = timestamp us

update gui
lock:
matrix = None latest matrix None latest matrix.copy
timestamp = latest timestamp
matrix None:

matrix re _range(matrix

high res matrix = zoom(matrix, UPSCALE FACTOR, order
im.set array(high res matrix

ax.set title(f"Timestamp: {timestamp}"

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 17/22 GieBwagen - Plant Detection

canvas.draw
root.after update gui) # 10 Hz refresh rate

clean exit
running
running = False

sock.close
Exception:

csvfile.close
Exception:

root.destroy

Socket connection and main setup

sock = socket.create connection((ESP32 IP, ESP32 PORT
sock.settimeout

csvfile = open(CSV_FILENAME, mode='w', newline=""
writer csv.writer(csvfile

header “timestamp us"] + [f"zone {i}" i range
writer.writerow(header

receiver thread = threading.Thread(target-data receiver, args=(sock, writer
csvfile), daemon=True
receiver thread.start

root tk.Tk
root.title("Live Sensor Heatmap"

fig, ax plt.subplots

im = ax.imshow(np.zeros * UPSCALE FACTOR * UPSCALE_FACTOR
cmap='viridis', vmin vmax

canvas FigureCanvasTkAgg(fig, master=root
canvas.get tk widget().pack

close button = tk.Button(root, text="Close", command-=clean exit
font=("Arial" fg="red"
close button.pack(pady

root.after update gui
root.protocol ("WM DELETE WINDOW", clean exit

root.mainloop

Graphic result

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-a%3Astart&media=amc:ss2025:group-a:screenshot_2025-07-29_094906.png

Last update: 2025/07/29 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

14:58
- G00
550
- 500
- 450
- 400
{II 3 6 91215182124273033 3-63.942454351 5457 6063
Results

Functional Testing

When the ESP32 is powered and connected to Wi-Fi:

e The VL53L8CX sensor continuously scans its field, providing an 8x8 distance map.

e The ESP32 detects objects (e.g., plant) based on pixels closer than the background by a given
threshold.

e When an object is close to the central region of the sensor frame (representing a plant directly
under the sensor), GPIO7 is activated—demonstrating selective and efficient irrigation.

¢ Actuator remains off when no plant is detected or it is not near the center, preventing watering
of bare soil and reducing excessive chemical/fertilizer application.

¢ All sensor frames and button events are timestamped and streamed live to TCP clients for
monitoring or data analysis.

Environmental Impact

* Water Use Reduction: System only waters when plant presence is confirmed and in the
precise location, minimizing waste.

* Reduced Chemical Runoff: As irrigation is limited to when and where needed, less fertilizer is
washed into groundwater.

» Data Gathering: Collected distance/time data supports further optimization, trend analysis,
and integration with weather/fertilization schedules.

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 19/22 GieBwagen - Plant Detection

Reliability

e Button interrupts reliably send annotated “mark” frames for event logging or manual input.

e The system is resilient to network disconnects, with reconnection and data buffering as
programmed.

Pictures of the prototype

Data analysis

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from scipy.ndimage import zoom

from scipy.interpolate import interpld

fnamel = "v15318cx data third test.csv"

df = pd.read csv(fnamel)

#Since the marks acquisition is not reliable enough, the data has to be
treated manually to discard unuseful data

dataFrame = df.loc[1419:2618].drop(2360)

def getPath(df):
idx = list(df.loc[df["zone 1"]==0].index)
path list = []
for 1 in range(len(idx)):
if (i+1)%4 == 0 and i '= 0O:
path list.append(df.loc[idx[i-3]:idx[i]])
#print(f"{i} : [{idx[i-3]}:{idx[1i]}]")
return path list

def mean_speed(data):
idx = list(data.loc[data["zone 1"]|==0].index)

tl = data.loc[idx[1]]["timestamp us"]| - data.loc[idx[0O]]["timestamp us"]|
t2 = data.loc[idx[2]]["timestamp us"] - data.loc[idx[1]]["timestamp us"]
t3 = data.loc[idx[3]]["timestamp us"] - data.loc[idx[2]]["timestamp us"]

spdl = 200/t1

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29

14:58 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

spd2 1000/t2
spd3 1000/t3
spdl+spd2+spd3)/3
paths getPath(dataFrame

1. Calculate continuous locations and concatenate all paths as before:

i range(len(paths

loc paths[i]["timestamp us"] - paths[i].iloc[O]["timestamp us" &
mean_speed(paths|i

paths i pd.concat([paths[i], loc.to frame('location’ axis=1

paths|i paths|i]|.drop(list(paths[i!.loc/paths[i]|"zone 1"
0].index

path t pd.concat(paths
path t = path t.sort values("location"

locations = path_t['location']|.values
data values = path t.iloc[:, 1:-1].values # Adjust indices if your columns
differ

2. Interpolate sensor columns independently on a uniform location grid:
min_loc, max_loc = np.min(locations), np.max(locations

num_interp points = int(np.ceil(max loc - min_loc)) + 1

interp locations = np.linspace(min_loc, max_loc, num interp points

interp data = np.zeros((num interp points, data values.shapell

col range (data values.shape|l

interp func = interpld(locations, data values|:, col|, kind='linear"'
fill value='extrapolate'

interp datal:, col interp func(interp locations

3. Reshape each row into 8x8 frames:

num_frames = interp data.shapel0

frame height, frame width = 8, 8

frames 8x8 interp datalil.reshape(frame height, frame width i
range(num_frames

4. Interpolate each 8x8 frame to 64x64 using scipy.ndimage.zoom:
zoom factor = 64 / 8 # 8x to 64x scaling

frames 64x64 zoom(frame, zoom factor, order=3 frame frames 8x8
cubic spline interpolation (order=3)

5. Aggregate frames horizontally with averaging over overlaps (same as
before) :

max_offset = num frames - 1

final width = max offset + 64 # width after scaling frames to 64 wide
final frame 64 = np.zeros((64, final width

count 64 = np.zeros((64, final width

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

2026/01/31 18:53 21/22 GieBwagen - Plant Detection

i, frame enumerate(frames 64x64):

offset = 1

final frame 64|:, offset:offset+ += frame
count 64|:, offset:offset+ +

aggregated 64 = np.divide(final frame 64, count 64

out

6.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

np.zeros like(final frame 64), where=count 64

Plot the aggregated 64x wide frame:

figure(figsize=(final width / # Adjust size for clarity
imshow(aggregated 64, cmap='viridis', aspect='auto'
colorbar(label="'Value'

title("Aggregated Large Frame with 8x8 to 64x64 Spatial Interpolation”
xlabel('Columns (scaled)'

ylabel('Rows (scaled)'

show

Discussion

This system showcases the potential of integrating low-cost sensor networks and automation for
sustainable environmental stewardship:

Precision Irrigation: Only waters when plant is actually present, avoiding traditional timer-based
schemes that can waste water and leach chemicals.

Scalability: Multiple ESP32/sensor nodes can be deployed across large fields or greenhouses,
each acting independently but monitored from a central server.

Customization: Sensor thresholds, actuator logic, and even fertilization scheduling can be
tailored using the streamed data, allowing fine-grained environmental control.

Limitations & Improvements:

Current system is distance-based; integrating soil moisture or plant health sensors could further
refine watering decisions.

Wireless reliability is dependent on network strength; alternative protocols (e.g., LoRa) could be
used in rural deployments.

Data encryption/authentication could be added for more secure remote management.

In summary, this project presents a practical, adaptable example of how sensor-driven automation
can help address water and chemical conservation challenges in environmental and agricultural
settings. The design and methods are fully replicable, providing a baseline for further innovation and
environmental impact.

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29

14:58 amc:ss2025:group-a:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

Last update: 2025/07/29 14:58

https://student-wiki.eolab.de/ Printed on 2026/01/31 18:53

https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-a:start&rev=1753793885

	Gießwagen - Plant Detection
	Introduction
	Materials and Methods
	Materials
	Pin Assignments

	Methods
	System Configuration and Setup
	Software Flow
	Complete ESP32 code
	Assembly
	Circuit diagram
	Client Software for Data Reception and Visualization

	Results
	Functional Testing
	Environmental Impact
	Reliability
	Pictures of the prototype
	Data analysis

	Discussion
	Limitations & Improvements:

