
2025/10/30 22:36 1/11 Automated Temperature Profiling Using Microcontroller

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Automated Temperature Profiling Using
Microcontroller

Applied Measurement and Control 2025

Prof. Dr. Rolf Becker

Hannah Pearly Shelly David, 33189; Kirandeep Kaur, 34284; Amir-Hamza Akash, 32425

Introduction

(by Hannah Pearly Shelly David)

The European Union’s Water Framework Directive (2024) (European Union, 2024) regularly monitors
water bodies, and one among the many water profiling methods include detailed vertical profiles of
lakes. Organizations like LINEG typically conduct this by manually lowering a multisensor into the
water in 0.5-meter increments. At each depth, the operator has to wait for the sensor to stabilize
before logging the readings using a handheld. This repetitive process takes 20 to 30 minutes and ties
up personnel who could otherwise taking other necessary samples parallelly. The current manual
system, although effective, lacks efficiency and consistency. This project is about automating the
descent of a temperature sensor (demo purpose), controlling the timing of data collection with the
help of a microcontroller to manage all system components. The intended result is of a more
autonomous process that replicates the same profiling steps with a lot more consistency.  

Materials and Methods

(by Amir-Hamza Akash)

The prototype (Figure 1.) was constructed with an Arduino Uno microcontroller, chosen for its ease of
programming and compatibility with a commonly available motor shield and sensor. A DS18B20
digital temperature sensor was used to measure water temperature at each depth. This sensor
communicates using the OneWire protocol and requires a 4.7kΩ pull-up resistor on the data line for
stable operation (Figure 2.). For vertical motion, a 12V worm-geared DC motor was used (Model no.
JGY370) to simulate the lowering and retrieval of the temperature sensor via a string (Figure 3.). The
motor was controlled using an Adafruit Motor Shield v2, which can be mounted onto the Arduino Uno
microcontroller and provides high-current motor control.

Last update: 2025/07/29
19:12 amc:ss2025:group-b:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-b:start&rev=1753809124

https://student-wiki.eolab.de/ Printed on 2025/10/30 22:36

Figure 1. View of the electronics setup showing the Arduino Uno, motor shield, 9V battery and
DS18B20 sensor connections

Figure 2. DS18B20 digital temperature sensor wired to digital pin D2, with a 4.7kΩ pull-up resistor
between data and VCC

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-b%3Astart&media=amc:ss2025:group-b:whole.jpg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-b%3Astart&media=amc:ss2025:group-b:temp.jpg

2025/10/30 22:36 3/11 Automated Temperature Profiling Using Microcontroller

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Figure 3. 12V DC worm gear motor for lowering and raising the sensor.

Power was supplied via a 9V battery instead of a 12V battery due to availability constraints, though
the system is ideally meant to be powered with a regulated 12V source to achieve full motor torque.
The DS18B20 sensor was connected to digital pin D2 on the Arduino. The motor was connected to M1
on the motor shield. A built-in Hall effect encoder in the motor was initially intended to measure
rotation and thereby estimate depth, but it was later excluded due to lack of encoder signal detection
followed by non-functional outputs, possibly caused by hardware faults or wiring inconsistencies. An
alternate method was adopted where depth estimation was done using a time-based method.

This method is grounded in the geometry of the spool and the known motor characteristics. A spool
diameter of approximately 4 cm was assumed. From this, the circumference of the spool was
calculated using the formula for the circumference of a circle:

Circumference = π × Diameter = π × 4cm ≈ 12.57cm

This implies that one complete rotation of the spool releases approximately 12.57 cm of wire.

The DC worm gear motor in the system has a rated speed of 90 RPM at 12V. However, due to the use
of a 9V battery instead of the rated 12V power supply, a proportional reduction in speed was
assumed. A reduction of approximately 25% was estimated, resulting in an adjusted motor speed of
around 67.5 RPM, or:

67.5 RPM ÷ 60 ≈ 1.125 rotations per second

To descend 0.5 meters (50 cm) of wire, the number of required spool rotations was calculated as:

50cm ÷ 12.57 cm per rotation ≈ 3.98 rotations

The time required to complete this number of rotations at the given speed is:

3.98 rotations ÷ 1.125 rotations/sec ≈ 3.54 seconds

To ensure reliable descent, the descent duration was rounded up to 4 seconds per 0.5 meters. This
time-based approach was used to approximate sensor depth at each step, aiding with the automated
collection of temperature data at predefined intervals. By assuming a spool diameter of

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-b%3Astart&media=amc:ss2025:group-b:motor.jpg

Last update: 2025/07/29
19:12 amc:ss2025:group-b:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-b:start&rev=1753809124

https://student-wiki.eolab.de/ Printed on 2025/10/30 22:36

approximately 4 cm and a reduced RPM (75% of original speed at 12V) due to under-voltage
conditions, each 0.5-meter descent was timed for 4 seconds due to t.

The code was written in Arduino IDE and configured to move the motor forward in short bursts, pause
for 30 seconds at each stop to simulate thermal stabilization, and read the temperature using the
DS18B20. After the final depth was reached, the motor reversed direction and reeled the wire back to
the starting point.

Results

(by Kirandeep Kaur)

The Arduino code successfully controlled the descent and temperature reading collection. For the sole
purpose of a demo, the code was written in such a way it samples a 3 meter deep lake or water body.
This would mean a total of 5 depth levels were configured, corresponding to a total descent of 2.5
meters. Readings are not taken at the 3 meter mark as by then the temperature readings would be
affected by the temperature of the waterbed. Therefore, at each step, the system printed the
estimated depth and corresponding temperature reading onto the serial monitor. The readings were
separated by 30-second delays to mimic the real sampling procedure. Once all data points were
collected, the motor reversed and reeled in the sensor based on the total descent time. The final
message confirmed the completion of the measurement cycle (Figure 5.).

#include <Wire.h>
#include <Adafruit_MotorShield.h>
#include <OneWire.h>
#include <DallasTemperature.h>

// Motor Shield Setup
Adafruit_MotorShield AFMS = Adafruit_MotorShield();
Adafruit_DCMotor *motor = AFMS.getMotor(1); // Connected to M1

// DS18B20 Setup
#define ONE_WIRE_BUS 2
OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);

// Parameters
int totalSteps = 5; // 5 steps = 2.5 meters
int delayPerStep_ms = 4000; // 4 seconds per 0.5m descent (estimated
at 9V)
int waitAfterStep_ms = 30000; // 30 seconds wait per depth before
reading

void setup() {
 Serial.begin(9600);
 AFMS.begin();
 sensors.begin();

2025/10/30 22:36 5/11 Automated Temperature Profiling Using Microcontroller

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 Serial.println("=== Automated Temperature Logging System ===");
 Serial.println("Starting descent...");

 // Descent loop
 for (int i = 1; i <= totalSteps; i++) {
 Serial.print("\nDescending to estimated depth: ");
 Serial.print(i * 0.5);
 Serial.println(" meters");

 // Lower motor
 motor->setSpeed(150); // Adjust speed as needed
 motor->run(FORWARD);
 delay(delayPerStep_ms);
 motor->run(RELEASE);

 // Wait before reading
 Serial.println("Waiting 30 seconds for water to stabilize...");
 delay(waitAfterStep_ms);

 // Read temperature
 sensors.requestTemperatures();
 float tempC = sensors.getTempCByIndex(0);

 Serial.print("Temperature at ");
 Serial.print(i * 0.5);
 Serial.print(" meters: ");
 Serial.print(tempC);
 Serial.println(" °C");
 }

 // Rewind sensor to surface
 Serial.println("\nRewinding sensor to surface...");

 motor->setSpeed(150);
 motor->run(BACKWARD);
 delay(totalSteps * delayPerStep_ms); // Run long enough to rewind all
steps
 motor->run(RELEASE); // Stop motor

 Serial.println("Measurement cycle complete.");
}

void loop() {
}

Last update: 2025/07/29
19:12 amc:ss2025:group-b:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-b:start&rev=1753809124

https://student-wiki.eolab.de/ Printed on 2025/10/30 22:36

Figure 5. Real-time output from Arduino serial monitor showing temperature readings at every 0.5m
depth.

The motor behaved as expected in both directions when supplied with 9V, although noticeably under-
powered compared to its rated 12V specification. The DS18B20 sensor responded with temperature
values at each level. The encoder component of the motor did not produce usable signals during
testing and was omitted from the final implementation. An SD card module was not connected during
this prototype phase due to time constraints, code and planning are however in place for its
integration.

#include <SD.h>

// SD Card Setup
const int chipSelect = 10; // CS pin for SD card

void setup() {
 // Initialize SD Card
 Serial.print("Initializing SD card...");
 if (!SD.begin(chipSelect)) {
 Serial.println(" SD card failed or not present.");
 while (1); // Halt program
 }
 Serial.println(" SD card initialized.");

 // Open file and write header
 dataFile = SD.open("datalog.txt", FILE_WRITE);
 if (dataFile) {
 dataFile.println("Depth (m), Time (ms), Temperature (C)");
 dataFile.close();
 } else {
 Serial.println("Error opening datalog.txt");
 }

 // Log to SD
 dataFile = SD.open("datalog.txt", FILE_WRITE);
 if (dataFile) {
 dataFile.print(depth, 2);
 dataFile.print(", ");
 dataFile.print(timestamp);
 dataFile.print(", ");
 dataFile.println(tempC, 2);

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-b%3Astart&media=amc:ss2025:group-b:output.png

2025/10/30 22:36 7/11 Automated Temperature Profiling Using Microcontroller

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 dataFile.close();
 } else {
 Serial.println("Failed to write to SD card.");
 }
}

Results

(by Kirandeep Kaur)

The Arduino code successfully controlled the descent and temperature reading collection. For the sole
purpose of a demo, the code was written in such a way it samples a 3 meter deep lake or water body.
This would mean a total of 5 depth levels were configured, corresponding to a total descent of 2.5
meters. Readings are not taken at the 3 meter mark as by then the temperature readings would be
affected by the temperature of the waterbed. Therefore, at each step, the system printed the
estimated depth and corresponding temperature reading onto the serial monitor. The readings were
separated by 30-second delays to mimic the real sampling procedure. Once all data points were
collected, the motor reversed and reeled in the sensor based on the total descent time. The final
message confirmed the completion of the measurement cycle (Figure 5.).

#include <Wire.h>
#include <Adafruit_MotorShield.h>
#include <OneWire.h>
#include <DallasTemperature.h>

// Motor Shield Setup
Adafruit_MotorShield AFMS = Adafruit_MotorShield();
Adafruit_DCMotor *motor = AFMS.getMotor(1); // Connected to M1

// DS18B20 Setup
#define ONE_WIRE_BUS 2
OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);

// Parameters
int totalSteps = 5; // 5 steps = 2.5 meters
int delayPerStep_ms = 4000; // 4 seconds per 0.5m descent (estimated
at 9V)
int waitAfterStep_ms = 30000; // 30 seconds wait per depth before
reading

void setup() {
 Serial.begin(9600);
 AFMS.begin();
 sensors.begin();

 Serial.println("=== Automated Temperature Logging System ===");
 Serial.println("Starting descent...");

Last update: 2025/07/29
19:12 amc:ss2025:group-b:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-b:start&rev=1753809124

https://student-wiki.eolab.de/ Printed on 2025/10/30 22:36

 // Descent loop
 for (int i = 1; i <= totalSteps; i++) {
 Serial.print("\nDescending to estimated depth: ");
 Serial.print(i * 0.5);
 Serial.println(" meters");

 // Lower motor
 motor->setSpeed(150); // Adjust speed as needed
 motor->run(FORWARD);
 delay(delayPerStep_ms);
 motor->run(RELEASE);

 // Wait before reading
 Serial.println("Waiting 30 seconds for water to stabilize...");
 delay(waitAfterStep_ms);

 // Read temperature
 sensors.requestTemperatures();
 float tempC = sensors.getTempCByIndex(0);

 Serial.print("Temperature at ");
 Serial.print(i * 0.5);
 Serial.print(" meters: ");
 Serial.print(tempC);
 Serial.println(" °C");
 }

 // Rewind sensor to surface
 Serial.println("\nRewinding sensor to surface...");

 motor->setSpeed(150);
 motor->run(BACKWARD);
 delay(totalSteps * delayPerStep_ms); // Run long enough to rewind all
steps
 motor->run(RELEASE); // Stop motor

 Serial.println("Measurement cycle complete.");
}

void loop() {
}

2025/10/30 22:36 9/11 Automated Temperature Profiling Using Microcontroller

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Figure 5. Real-time output from Arduino serial monitor showing temperature readings at every 0.5m
depth.

The motor behaved as expected in both directions when supplied with 9V, although noticeably under-
powered compared to its rated 12V specification. The DS18B20 sensor responded with temperature
values at each level. The encoder component of the motor did not produce usable signals during
testing and was omitted from the final implementation. An SD card module was not connected during
this prototype phase due to time constraints, code and planning are however in place for its
integration.

#include <SD.h>

// SD Card Setup
const int chipSelect = 10; // CS pin for SD card

void setup() {
 // Initialize SD Card
 Serial.print("Initializing SD card...");
 if (!SD.begin(chipSelect)) {
 Serial.println(" SD card failed or not present.");
 while (1); // Halt program
 }
 Serial.println(" SD card initialized.");

 // Open file and write header
 dataFile = SD.open("datalog.txt", FILE_WRITE);
 if (dataFile) {
 dataFile.println("Depth (m), Time (ms), Temperature (C)");
 dataFile.close();
 } else {
 Serial.println("Error opening datalog.txt");
 }

 // Log to SD
 dataFile = SD.open("datalog.txt", FILE_WRITE);
 if (dataFile) {
 dataFile.print(depth, 2);
 dataFile.print(", ");
 dataFile.print(timestamp);
 dataFile.print(", ");
 dataFile.println(tempC, 2);

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-b%3Astart&media=amc:ss2025:group-b:output.png

Last update: 2025/07/29
19:12 amc:ss2025:group-b:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-b:start&rev=1753809124

https://student-wiki.eolab.de/ Printed on 2025/10/30 22:36

 dataFile.close();
 } else {
 Serial.println("Failed to write to SD card.");
 }
}

Discussion

(by Hannah Pearly Shelly David)

The system presented here is an improvement over the manual sampling method in terms of operator
efficiency especially. While the current version operates in a lab setting, the core components mimic
the actual field conditions. One of the key limitations was the lack of a working encoder, which would
have allowed for real-time depth feedback. The workaround was the use of timed descent and an
assumed spool diameter which proved effective for this prototype, but use of the encoder in the
future would benefit greatly from direct feedback systems.

Another limitation was power delivery. The 9V battery used was insufficient to fully drive the motor at
its rated speed and torque, which could be problematic in outdoor or deeper water environments.
Additionally, the absence of an actual winding spool and waterproofing limits the deployment of this
system in real water bodies. The system is currently limited to serial output, but future enhancements
can include the use of SD card data logging or wireless data transmission via Wi-Fi or LoRa modules.

Despite these limitations, the prototype demonstrated the core functionality: automated descent,
timed temperature reading, and motorized rewinding.

Conclusion

(by Kirandeep Kaur)

This project has somewhat successfully demonstrated a microcontroller-based prototype for
automated water temperature profiling. Using an Arduino Uno, DS18B20 sensor, and a motorized
mechanism, the system automates a previously manual process, reducing sampling time and
improving consistency. Although limited by certain hardware constraints such as encoder failure and
underpowered supply, the prototype fulfills its educational and functional goals. Future versions will
aim to integrate data logging, improved power systems, real-time feedback, and a deployable
mechanical structure to enable field use.

References

1. European Union. (2024). Water Framework Directive.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 2. Rufián, R. (n.d.). Guide for
DS18B20 Temperature Sensor with Arduino. Random Nerd Tutorials.
https://randomnerdtutorials.com/guide-for-ds18b20-temperature-sensor-with-arduino/

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060
https://randomnerdtutorials.com/guide-for-ds18b20-temperature-sensor-with-arduino/

2025/10/30 22:36 11/11 Automated Temperature Profiling Using Microcontroller

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-b:start&rev=1753809124

Last update: 2025/07/29 19:12

https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-b:start&rev=1753809124

	Automated Temperature Profiling Using Microcontroller
	Applied Measurement and Control 2025
	Prof. Dr. Rolf Becker
	Hannah Pearly Shelly David, 33189; Kirandeep Kaur, 34284; Amir-Hamza Akash, 32425

	Introduction
	Materials and Methods

	Results
	Results
	Discussion

	Conclusion
	References

