# **Automated Temperature Profiling Using Microcontroller** #### **Applied Measurement and Control 2025** Prof. Dr. Rolf Becker Hannah Pearly Shelly David, 33189; Kirandeep Kaur, 34284; Amir-Hamza Akash, 32425 ### Introduction (by Hannah Pearly Shelly David) The European Union's Water Framework Directive (2024) (European Union, 2024) regularly monitors water bodies, and one among the many water profiling methods include detailed vertical profiles of lakes. Organizations like LINEG typically conduct this by manually lowering a multisensor into the water in 0.5-meter increments. At each depth, the operator has to wait for the sensor to stabilize before logging the readings using a handheld. This repetitive process takes 20 to 30 minutes and ties up personnel who could otherwise taking other necessary samples parallelly. The current manual system, although effective, lacks efficiency and consistency. This project is about automating the descent of a temperature sensor (demo purpose), controlling the timing of data collection with the help of a microcontroller to manage all system components. The intended result is of a more autonomous process that replicates the same profiling steps with a lot more consistency. # **Materials and Methods** (by Amir-Hamza Akash) The prototype (Figure 1.) was constructed with an Arduino Uno microcontroller, chosen for its ease of programming and compatibility with a commonly available motor shield and sensor. A DS18B20 digital temperature sensor was used to measure water temperature at each depth. This sensor communicates using the OneWire protocol and requires a $4.7k\Omega$ pull-up resistor on the data line for stable operation (Figure 2.). For vertical motion, a 12V worm-geared DC motor was used (Model no. JGY370) to simulate the lowering and retrieval of the temperature sensor via a string (Figure 3.). The motor was controlled using an Adafruit Motor Shield v2, which can be mounted onto the Arduino Uno microcontroller and provides high-current motor control. Last update: 2025/07/29 19:14 Figure 1. View of the electronics setup showing the Arduino Uno, motor shield, 9V battery and DS18B20 sensor connections Figure 2. DS18B20 digital temperature sensor wired to digital pin D2, with a 4.7k $\Omega$ pull-up resistor between data and VCC https://student-wiki.eolab.de/ Printed on 2025/07/31 17:52 Figure 3. 12V DC worm gear motor for lowering and raising the sensor. Power was supplied via a 9V battery instead of a 12V battery due to availability constraints, though the system is ideally meant to be powered with a regulated 12V source to achieve full motor torque. The DS18B20 sensor was connected to digital pin D2 on the Arduino. The motor was connected to M1 on the motor shield. A built-in Hall effect encoder in the motor was initially intended to measure rotation and thereby estimate depth, but it was later excluded due to lack of encoder signal detection followed by non-functional outputs, possibly caused by hardware faults or wiring inconsistencies. An alternate method was adopted where depth estimation was done using a time-based method. This method is grounded in the geometry of the spool and the known motor characteristics. A spool diameter of approximately 4 cm was assumed. From this, the circumference of the spool was calculated using the formula for the circumference of a circle: #### Circumference = $\pi \times Diameter = \pi \times 4cm \approx 12.57cm$ This implies that one complete rotation of the spool releases approximately 12.57 cm of wire. The DC worm gear motor in the system has a rated speed of 90 RPM at 12V. However, due to the use of a 9V battery instead of the rated 12V power supply, a proportional reduction in speed was assumed. A reduction of approximately 25% was estimated, resulting in an adjusted motor speed of around 67.5 RPM, or: #### $67.5 \text{ RPM} \div 60 \approx 1.125 \text{ rotations per second}$ To descend 0.5 meters (50 cm) of wire, the number of required spool rotations was calculated as: #### 50cm ÷ 12.57 cm per rotation ≈ 3.98 rotations The time required to complete this number of rotations at the given speed is: #### 3.98 rotations $\div$ 1.125 rotations/sec $\approx$ 3.54 seconds To ensure reliable descent, the descent duration was rounded up to 4 seconds per 0.5 meters. This time-based approach was used to approximate sensor depth at each step, aiding with the automated collection of temperature data at predefined intervals. By assuming a spool diameter of approximately 4 cm and a reduced RPM (75% of original speed at 12V) due to under-voltage conditions, each 0.5-meter descent was timed for 4 seconds due to t. The code was written in Arduino IDE and configured to move the motor forward in short bursts, pause for 30 seconds at each stop to simulate thermal stabilization, and read the temperature using the DS18B20. After the final depth was reached, the motor reversed direction and reeled the wire back to the starting point. ## **Discussion** (by Hannah Pearly Shelly David) The system presented here is an improvement over the manual sampling method in terms of operator efficiency especially. While the current version operates in a lab setting, the core components mimic the actual field conditions. One of the key limitations was the lack of a working encoder, which would have allowed for real-time depth feedback. The workaround was the use of timed descent and an assumed spool diameter which proved effective for this prototype, but use of the encoder in the future would benefit greatly from direct feedback systems. Another limitation was power delivery. The 9V battery used was insufficient to fully drive the motor at its rated speed and torque, which could be problematic in outdoor or deeper water environments. Additionally, the absence of an actual winding spool and waterproofing limits the deployment of this system in real water bodies. The system is currently limited to serial output, but future enhancements can include the use of SD card data logging or wireless data transmission via Wi-Fi or LoRa modules. Despite these limitations, the prototype demonstrated the core functionality: automated descent, timed temperature reading, and motorized rewinding. # **Conclusion** (by Kirandeep Kaur) This project has somewhat successfully demonstrated a microcontroller-based prototype for automated water temperature profiling. Using an Arduino Uno, DS18B20 sensor, and a motorized mechanism, the system automates a previously manual process, reducing sampling time and improving consistency. Although limited by certain hardware constraints such as encoder failure and underpowered supply, the prototype fulfills its educational and functional goals. Future versions will aim to integrate data logging, improved power systems, real-time feedback, and a deployable mechanical structure to enable field use. # References 1. European Union. (2024). Water Framework Directive. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 2. Rufián, R. (n.d.). Guide for DS18B20 Temperature Sensor with Arduino. Random Nerd Tutorials. https://randomnerdtutorials.com/guide-for-ds18b20-temperature-sensor-with-arduino/ From: https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki Permanent link: https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-b:start&rev=1753809258 Last update: 2025/07/29 19:14