2025/11/03 10:55 1/13 CarPi

CarPi

by Nicole Alvarado (35983), Jonathan Stuermlinger (34602), & Ben Koellner
(34603)

Introduction

by Jonathan Stuermlinger (34602)

For our AMC project, we developed a basic traffic monitoring system using a Raspberry Pi 5, designed
to detect and count vehicles as they pass through a designated section of road captured by a camera.
The collected data is uploaded to a web-based dashboard, which could provide a foundation for traffic
flow analysis and supporting studies on air pollution, noise levels, and overall urban livability. Such
information can also play a valuable role in infrastructure planning and broader environmental
monitoring initiatives.

Material & Methods

Hardware Components

by Nicole Alvarado (35983) & Ben Koellner (34603)
The project was developed using the following hardware components:

e Raspberry Pi 5

Raspberry Pi High Quality Camera (CS Mount)
MicroSD card (32 GB)

Power supply

HDMI cable

Monitor

Mouse and keyboard

Hardware Assemblance

To prepare the hardware environment for traffic monitoring, the Raspberry Pi 5 was assembled to
create a functional and interactive environment for real-time object detection. The hardware
integration process is as followed:

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-e%3Astart&media=amc:ss2025:group-e:3c21d31e-a878-4388-bfde-dd9519e4ea36.jpg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-e%3Astart&media=amc:ss2025:group-e:3c21d31e-a878-4388-bfde-dd9519e4ea36.jpg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-e%3Astart&media=amc:ss2025:group-e:3c21d31e-a878-4388-bfde-dd9519e4ea36.jpg

Last update: 2025/07/29

16:56

amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753800994

Fig. 1: System Build

1.

ov e Ww

Insert the camera’s ribbon cable into the CSI (Camera Serial Interface) port of the Raspberry Pi
by lifting the plastic latch and pressing back down to secure the cable.

Screw the CS-mount lens onto the HQ camera board and attach the other side of the camera’s
ribbon cable.

Connect the USB keyboard and USB mouse into the USB ports of the Raspberry Pi.

Connect the monitor using an HDMI to micro-HDMI cable.

Once flashed, insert the 32 GB microSD card.

Plug in the USC-C power supply to the Raspberry Pi’s power port, this will automatically boot the
system.

Mount the camera in a fixed position using a tripod facing the desired street area.

System Setup

Raspberry Pi Initialization

The Raspberry Pi 5 was set up using a flashed MicroSD card containing the latest version of Raspberry
Pi OS (64-bit). This was done via the Raspberry Pi Imager by selecting:

e Device: Raspberry Pi 5
e Operating System: Raspberry Pi Os (64-bit).
e Storage: 32 GB MicroSD card.

https://student-wiki.eolab.de/ Printed on 2025/11/03 10:55

2025/11/03 10:55 3/13 CarPi

B, Faspbaimy PiImager o196 - ul »

' Raspberry Pi

RASFBERRY Pl 05 (BT, GEMERIC- SD/MMCTME PFRO US

Fig. 2: Raspberry Pi imager

Installing OpenCV and Required Packages

To enable object detection, OpenCV version 4.8.1 was compiled. The following commands were
executed on the Raspberry Pi terminal:

sudo apt-get update &4 sudo apt-get upgrade
sudo nano /etc/dphys-swapfile

Essential libraries and tools were installed:

sudo apt-get install -y \

build-essential cmake pkg-config \

libjpeg-dev libtiff-dev libpng-dev \

libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev \

libgtk-3-dev \

libatlas-base-dev gfortran \

python3-dev python3-numpy python3-pip \

python3-picamera2 python3-opencv

OpenCuv library and its additional modules were retrieved from Github, unzipped, and set up for the
build process

cd ~

wget -0 opencv.zip https://github.com/opencv/opencv/archive/4.8.1.zip
wget -0 opencv _contrib.zip
https://github.com/opencv/opencv_contrib/archive/4.8.1.zip

unzip opencv.zip
unzip opencv contrib.zip

mv opencv-4.8.1 opencv
mv opencv_contrib-4.8.1 opencv_contrib

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29

16:56 amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753800994

Compilation and installation of OpenCV performed as follows:

cd ~/opencv
mkdir build
cd build
cmake -D CMAKE BUILD TYPE=RELEASE \

D CMAKE INSTALL PREFIX-=/usr/local \

D INSTALL PYTHON EXAMPLES=ON \

D OPENCV_EXTRA MODULES PATH=~/opencv_contrib/modules \
D BUILD EXAMPLES-ON ..

make -j$(nproc
sudo make install
sudo ldconfig

Creating a Python Virtual Environment for the dashboard

To prevent conflicts with the system’s main Python package repository, the dashboard was developed
within a virtual environment to manage its required packages independently.

sudo apt install python3-venv python3-full
python3 -m venv ~/dashboard-env

source ~/dashboard-env/bin/activate

pip install flask pandas plotly

Files Setup and Execution

Provided below is a downloadable ZIP containing the pre-trained COCO object detection model used in
this setup. It also includes a list of all detectable object classes that the COCO library has been trained
to recognize. All project files, including the object detection, dashboard scripts and vehicle log, were
placed into the previously downloaded archives (Object Detection_Files) and transferred to the
Raspberry Pi Desktop using a USB stick.

object_detection_files.zip
To execute the object detection script, enter the following command in the terminal.

cd /home/pi/Desktop/Object Detection Files
python3 object detection final.py

Once the detection process is running, you can launch the live dashboard by activating the virtual
environment and starting the server. The dashboard can then be accessed via a web browser using
the address shown in the terminal.

source ~/dashboard-env/bin/activate
cd /home/pi/Desktop/Object Detection Files
python dashboard.py

https://student-wiki.eolab.de/ Printed on 2025/11/03 10:55

https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc:ss2025:group-e:object_detection_files.zip
https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc:ss2025:group-e:object_detection_files.zip
https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc:ss2025:group-e:object_detection_files.zip
https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc:ss2025:group-e:object_detection_files.zip
https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc:ss2025:group-e:object_detection_files.zip

2025/11/03 10:55 5/13 CarPi

Results

by Nicole Alvarado (35983)

Code

Three Python scripts were developed as part of the system's functionality.

1. Object Detection
2. Vehicle Log
3. Dashboard

The object detection script (object_detection_final.py) uses OpenCV's DNN module with a pre-trained
SSD MobileNet model trained on the COCO dataset. It captures video input from the Pi camera,
identifies vehicles (car, bus, truck, motorbike), draws bounding boxes, and logs the counts into a CSV
file.

from picamera2 import Picamera2

import time

import os

from datetime import datetime

import csv

import cv2

import numpy as np

from scipy.spatial import distance as dist
from collections import OrderedDict

=== Load class names ===
classNames
classFile "/home/aless/Desktop/Object Detection Files/coco.names"

with open(classFile, "rt") as f
classNames f.read().rstrip("\n").split("\n"

=== Load model config and weights ===

configPath
"/home/aless/Desktop/Object Detection Files/ssd mobilenet v3 large coco 2020
01 14.pbtxt"

weightsPath
"/home/aless/Desktop/Object Detection Files/frozen inference graph.pb"

assert os.path.exists(classFile f"Missing file: {classFile}"
assert os.path.exists(configPath f"Missing file: {configPath}"
assert os.path.exists(weightsPath f"Missing file: {weightsPath}"

=== Load the model ===

net cv2.dnn DetectionModel (weightsPath, configPath
net.setInputSize (320, 320

net.setInputScale(1.0 127.5
net.setInputMean((127.5, 127.5, 127.5

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/time.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html

Iia;;gpdate: 2025/07/29 amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753800994

net.setInputSwapRB(True

=== Vehicle detection function ===
def getObjects(img, thres, nms, draw=True, objects

classIds, confs, bbox = net.detect(img, confThreshold=thres
nmsThreshold=nms

objectInfo

len(objects
objects classNames

len(classIds
classId, confidence, box in zip(classIds.flatten
confs.flatten bbox
className = classNames| classId
className in objects
objectInfo.append(|[box, className

draw
cv2.rectangle(img, box, color thickness
cv2.putText(img, className.upper box box
cv2.FONT HERSHEY COMPLEX
cv2.putText(img, str(round(confidence %"

box box
cv2.FONT HERSHEY COMPLEX
img, objectInfo

=== Log object count to CSV ===
def log vehicle count(vehicle type, total
with open("vehicle log.csv", "a", newline='"') as f
writer = csv.writer(f
writer.writerow([datetime.now().isoformat vehicle type, total
=== (Centroid Tracker ===

class CentroidTracker
def init (self, maxDisappeared
self.nextObjectID
self.objects = OrderedDict
self.disappeared = OrderedDict
self.maxDisappeared maxDisappeared
self.counted set

def register(self, centroid
self.objects|self.nextObjectID centroid
self.disappeared|self.nextObjectID
self.nextObjectID

def deregister(self, objectID
del self.objects/ objectID
del self.disappeared/ objectID

https://student-wiki.eolab.de/ Printed on 2025/11/03 10:55

2025/11/03 10:55 7/13

CarPi

def update(self, inputCentroids
len(inputCentroids
objectID in list(self.disappeared.keys
self.disappeared|/objectID
self.disappeared|/objectID self.maxDisappeared
self.deregister(objectID
self.objects

len(self.objects
i in range len(inputCentroids
self.register(inputCentroids|i

objectIDs list(self.objects.keys

objectCentroids list(self.objects.values

D = dist.cdist(np.array(objectCentroids inputCentroids
rows = D.min(axis .argsort

cols = D.argmin(axis rows

usedRows set
usedCols set

row, col) in zip(rows, cols
row in usedRows or col in usedCols

objectID objectIDs| row
self.objects|[objectID inputCentroids/col
self.disappeared|/objectID

usedRows .add (row

usedCols.add(col

unusedRows set(range D.shape .difference(usedRows
row in unusedRows
objectID = objectIDs| row
self.disappeared|[objectID
self.disappeared|[objectID self.maxDisappeared
self.deregister(objectID

col in set(range D.shape .difference(usedCols
self.register(inputCentroids/col

self.objects

=== Main application ===
__name " main_
picam2 Picamera2
picam2.configure(picam2.create preview configuration(main={"format"
"RGB888", "size"
picam2.start
time.sleep

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/time.html

Last update: 2025/07/29

16:56 amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753800994

Now also counting bicycle and person

detectable classes “car", "bus", "truck", "motorbike", "bicycle"
“person"
object totals cls cls in detectable classes
line x # vertical line position
tracker = CentroidTracker
id to type
True

img picam2.capture array
result, objectInfo = getObjects(img, 0.45, 0.2
objects=detectable classes

Draw vertical counting line
cv2.line(img, (line x line x

Get centroids of current detections
detections
box, name in objectInfo
X, Yy, w, h box
detections.append((name, (x +w // 2, v + h // 2)))

centroids = np.array(|c _, € 1in detections
objects = tracker.update(centroids

objectID, centroid in objects.items

CX, cy centroid

cv2.circle(img CX, cy

cv2.putText(img, f"ID {objectID}" cX cy
cv2.FONT HERSHEY SIMPLEX, 0.5

Match ID with detected type
objectID not in id to type
name, (dx, dy)) in detections

abs(cx - dx and abs(cy - dy
id to typelobjectID name
break

Count if crossing vertical line
objectID not in tracker.counted

cx = line x and cx < line x
obj type id to type.get(objectID
obj type

object totals|/obj type
tracker.counted.add(objectID
log vehicle count(obj type, object totals/obj type

Display total and per-class counts
total = sum(object totals.values
cv2.putText(img, f"Total Counted: {total}"”

https://student-wiki.eolab.de/ Printed on 2025/11/03 10:55

http://www.opengroup.org/onlinepubs/009695399/functions/abs.html
http://www.opengroup.org/onlinepubs/009695399/functions/abs.html

2025/11/03 10:55

9/13

CarPi

cv2.FONT HERSHEY SIMPLEX, 0.9
y offset
obj type in detectable classes

label

f"{obj type.title()}: {object totals[obj type]}"
cv2.putText(img, label

cv2.FONT_HERSHEY SIMPLEX, 0.8

y offset

cv2.imshow("Output"

cv2.waitKey

break

cv2.destroyAllWindows

The vehicle_log.csv serves as the system's central data log for vehicle detection events. It is

img
OxFF

y offset

ord('q'’

automatically generated and updated by the object detection script each time a vehicle is recognized
in the camera feed. Each entry in the file consists of a timestamp, the type of vehicle detected (e.qg.,
car, bus, truck, motorbike), and a numeric count (typically per detection). This log acts as the primary

data source for the dashboard script, which reads and processes it in real time to generate

visualizations. The file is stored locally in the same directory as the scripts and can be reset via the
dashboard interface to clear all logged entries. The log of the data looks like this:

07
07
07
07
07
07
07
07
07
07
07
07
07
07
07
07
07
07
07
07
07
07

28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16
28T16

04
04
04
04
04
05
05
05
05
05
06
06
06
07
07
07
07
07
07
08
08
08

24.
27.
30.
34.
46.
21.

27
32

174465
597785
165927
733430
082917
296150

.438530
.466989
46.
58.
20.
29.
43.
02.
05.
07.
18.
29.
46.
30.
34.
39.

877602
076430
091424
027871
929392
028061
071340
032200
122763
345924
129527
797174
676911
359371

car
car
car
car
car
car
car
car
car
car
car
person
car
car
car
car
car
car
car
person
person
person

The dashboard script (dashboard.py) creates a local web server using Flask and displays a real-time
plot of vehicle counts using Plotly. The data is read from the vehicle_log.csv file, and the dashboard
includes a reset button and the custom logo of CarPi.

from flask import Flask

import pandas as pd

render template string, redirect

url for

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29
16:56

amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753800994

import plotly.graph objs as go
import plotly.offline as pyo
from collections import Counter
import os

from datetime import datetime

app = Flask(_ name

@app.route("/"

def index
not os.path.exists("vehicle log.csv") or
0s.path.getsize("vehicle log.csv")

<html><body style='font-family:sans-serif;padding:2em;text-
align:center'>
<h2>No data yet</h2>
<p>Waiting for vehicle detections...</p>
<a href='/' style='display:inline-block;margin-
top:lem; '>Refresh

</body></html>
df = pd.read csv("vehicle log.csv", names=["Time", "Vehicle Type"
"Count"
df["Time" pd.to datetime(df["Time"

fig = go.Figure

total df.groupby("Time").size().cumsum

fig.add trace(go.Scatter(x=total.index, y=total.values
mode="'1lines+markers', name='Total Vehicles'

vtype in df["Vehicle Type"]|.unique

sub = df[df["Vehicle Type"
vtypel.groupby ("Time").size().cumsum

fig.add trace(go.Scatter(x=sub.index, y=sub.values
mode='1lines+markers', name=vtype.title

fig.update layout
title="Live Vehicle Count"
template="plotly white"
xaxis title="Time"
yaxis title="Cumulative Count"
legend=dict(orientation="h", y=-0.3
margin=dict (t=60, b=40

graph_html pyo.plot(fig, output type="div", include plotlyjs="cdn"

Summary bar
totals Counter(df["Vehicle Type"

https://student-wiki.eolab.de/ Printed on 2025/11/03 10:55

2025/11/03 10:55 11/13 CarPi

total count = sum(totals.values

summary html "<div style='display:flex; flex-wrap:wrap; gap:20px;
margin-bottom:20px; '>"

summary html f'"<div class='summary-card'><h3>Total
Vehicles</h3><p>{total count}</p></div>"

for vtype, count in totals.items

summary html f'"<div class='summary-
card'><h3>{vtype.title()}</h3><p>{count}</p></div>"
summary html "</div>"
html foon
<html>
<head>

<title>CarPi Dashboard</title>
<meta http-equiv="refresh" content="10">
<style>
body {{
font-family: Arial, sans-serif;
background: #f9f9f9;
padding: 20px;
color: #333;
3
.header {{
display: flex;
align-items: center;

gap: 15px;
margin-bottom: 20px;
3
.header img {{
width: 60px;
height: auto;
}}

.summary-card {{
background: #ffffff;
padding: 15px 20px;
border-radius: 8px;
box-shadow: 0 2px 6px rgba(0,0,0,0.1);
min-width: 120px;
text-align: center;

3

hl {{
font-size: 28px;
margin: O;

3

.top-bar {{
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 10px;

3

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29

16:56 amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753800994

.reset-button {{
background: #e74c3c;
border: none;
color: white;
padding: 10px 15px;
border-radius: 5px;
cursor: pointer;
font-size: 14px;
}}
</style>
</head>
<body>
<div class="'top-bar'>
<div class="'header'>
<img src="/static/carpi logo.png" alt="CarPi Logo"
width="60">
<h1>CarPi Dashboard</hl>
</div>
<form method="post" action="/reset">
<button class="reset-button" type="submit">Reset
Log</button>
</form>
</div>
{summary html}
{graph_html}
</body>
</html>

render_template string(html

@app.route("/reset", methods=|["POST"
def reset log
os.path.exists("vehicle log.csv"
with open("vehicle log.csv", "w") as f
pass
redirect(url for("index"

__name __main__
app.run(host="0.0.0.0", port

Discussion & Conclusion

by Jonathan Stuermlinger (34602) & Ben Koellner (34603)

While our traffic monitoring system functions reliably in its current form, there were several lessons
learned throughout the project. Initially, our goal was to develop the system using the Raspberry Pi 5
in combination with an Al Hat (an additional Raspberry Pi module designed to enhance computing
performance) and the YOLO algorithm for advanced object detection. However, due to repeated
compatibility and setup issues, we were unable to make the Al Hat fully operational and instead opted

https://student-wiki.eolab.de/ Printed on 2025/11/03 10:55

2025/11/03 10:55 13/13 CarPi

for an alternative approach based on OpenCV and COCO (Common Objects in Context) libraries. An
important takeaway from this experience is that a more successful integration of the Al Hat and YOLO
framework would likely have required reaching out for external support early on, especially to better
understand the specific requirements and limitations of the Raspberry Pi 5 and the Al Hat. Despite
these challenges, the alternative solution we implemented proved to be a solid and functional
approach for basic vehicle detection and counting.

However, the system is not without limitations. For example, detecting larger vehicles such as buses
proved inconsistent, especially depending on the camera angle and environmental conditions. In our
case, the monitoring frame was set up between trees, which occasionally interfered with object
detection.

Beyond technical issues, permanent deployment of such a system would also require consideration of
legal aspects, such as regulations around filming public roads and ensuring privacy compliance.

Currently, the system logs data locally, and access is limited to devices on the same network. A long-
term implementation would require modifications to reset the vehicle count periodically (e.g., every 5
minutes or more frequently during peak hours) and to store the data in a publicly accessible
database. Data visualization could be improved once sufficient data is collected for meaningful
analysis.

Despite these challenges, the project demonstrates that a low-cost and accessible traffic monitoring
solution is possible without specialized Al hardware. With further development, such a system could
be adapted for real-world use cases in traffic analysis, planning, or environmental studies.

Video

References

-insert info

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753800994 <

Last update: 2025/07/29 16:56

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753800994

	CarPi
	Introduction
	Material & Methods
	Hardware Components
	Hardware Assemblance
	System Setup
	Raspberry Pi Initialization
	Installing OpenCV and Required Packages
	Creating a Python Virtual Environment for the dashboard

	Files Setup and Execution

	Results
	Code

	Discussion & Conclusion
	Video
	References

