
2026/01/31 22:21 1/13 CarPi

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

CarPi

by Nicole Alvarado (35983), Jonathan Stuermlinger (34602), & Ben Koellner
(34603)

Introduction

by Jonathan Stuermlinger (34602)

For our AMC project, we developed a basic traffic monitoring system using a Raspberry Pi 5, designed
to detect and count vehicles as they pass through a designated section of road captured by a Pi
camera. The collected data is uploaded to a web-based dashboard, which could provide a foundation
for traffic flow analysis and supporting studies on air pollution, noise levels, and overall urban
livability. Such information can also play a valuable role in infrastructure planning and broader
environmental monitoring initiatives.

Material & Methods

Hardware Components

by Nicole Alvarado (35983) & Ben Koellner (34603)

The project was developed using the following hardware components:

Raspberry Pi 5
Raspberry Pi High Quality Camera (CS Mount)
MicroSD card (32 GB)
Power supply
HDMI cable
Monitor
Mouse and keyboard

Hardware Assemblance

To prepare the hardware environment for traffic monitoring, the Raspberry Pi 5 was assembled to
create a functional and interactive environment for real-time object detection. The hardware
integration process is as followed:

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-e%3Astart&media=amc:ss2025:group-e:3c21d31e-a878-4388-bfde-dd9519e4ea36.jpg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-e%3Astart&media=amc:ss2025:group-e:3c21d31e-a878-4388-bfde-dd9519e4ea36.jpg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-e%3Astart&media=amc:ss2025:group-e:3c21d31e-a878-4388-bfde-dd9519e4ea36.jpg

Last update: 2025/07/29
17:05 amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753801552

https://student-wiki.eolab.de/ Printed on 2026/01/31 22:21

Fig. 1: System Build

Insert the camera’s ribbon cable into the CSI (Camera Serial Interface) port of the Raspberry Pi1.
by lifting the plastic latch and pressing back down to secure the cable.
Screw the CS-mount lens onto the HQ camera board and attach the other side of the camera’s2.
ribbon cable.
Connect the USB keyboard and USB mouse into the USB ports of the Raspberry Pi.3.
Connect the monitor using an HDMI to micro-HDMI cable.4.
Once flashed, insert the 32 GB microSD card.5.
Plug in the USC-C power supply to the Raspberry Pi’s power port, this will automatically boot the6.
system.
Mount the camera in a fixed position using a tripod facing the desired street area.7.

System Setup

Raspberry Pi Initialization

The Raspberry Pi 5 was set up using a flashed MicroSD card containing the latest version of Raspberry
Pi OS (64-bit). This was done via the Raspberry Pi Imager by selecting:

Device: Raspberry Pi 5
Operating System: Raspberry Pi Os (64-bit).
Storage: 32 GB MicroSD card.

2026/01/31 22:21 3/13 CarPi

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Fig. 2: Raspberry Pi imager

Installing OpenCV and Required Packages

To enable object detection, OpenCV version 4.8.1 was compiled. The following commands were
executed on the Raspberry Pi terminal:

sudo apt-get update && sudo apt-get upgrade
sudo nano /etc/dphys-swapfile

Essential libraries and tools were installed:

sudo apt-get install -y \
build-essential cmake pkg-config \
libjpeg-dev libtiff-dev libpng-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev \
libgtk-3-dev \
libatlas-base-dev gfortran \
python3-dev python3-numpy python3-pip \
python3-picamera2 python3-opencv

OpenCv library and its additional modules were retrieved from Github, unzipped, and set up for the
build process:

cd ~
wget -O opencv.zip https://github.com/opencv/opencv/archive/4.8.1.zip
wget -O opencv_contrib.zip
https://github.com/opencv/opencv_contrib/archive/4.8.1.zip

unzip opencv.zip
unzip opencv_contrib.zip

mv opencv-4.8.1 opencv
mv opencv_contrib-4.8.1 opencv_contrib

Last update: 2025/07/29
17:05 amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753801552

https://student-wiki.eolab.de/ Printed on 2026/01/31 22:21

Compilation and installation of OpenCV performed as follows:

cd ~/opencv/
mkdir build
cd build

cmake -D CMAKE_BUILD_TYPE=RELEASE \
 -D CMAKE_INSTALL_PREFIX=/usr/local \
 -D INSTALL_PYTHON_EXAMPLES=ON \
 -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \
 -D BUILD_EXAMPLES=ON ..

make -j$(nproc)
sudo make install
sudo ldconfig

Creating a Python Virtual Environment for the dashboard

To prevent conflicts with the system’s main Python package repository, the dashboard was developed
within a virtual environment to manage its required packages independently.

sudo apt install python3-venv python3-full
python3 -m venv ~/dashboard-env
source ~/dashboard-env/bin/activate
pip install flask pandas plotly

Files Setup and Execution

Provided below is a downloadable ZIP containing the pre-trained COCO object detection model used in
this setup. It also includes a list of all detectable object classes that the COCO library has been trained
to recognize. All project files, including the object detection, dashboard scripts and vehicle log, were
placed into the previously downloaded archives (Object_Detection_Files) and transferred to the
Raspberry Pi Desktop using a USB stick.

object_detection_files.zip
To execute the object detection script, enter the following command in the terminal.

cd /home/pi/Desktop/Object_Detection_Files
python3 object_detection_final.py

Once the detection process is running, you can launch the live dashboard by activating the virtual
environment and starting the server. The dashboard can then be accessed via a web browser using
the address shown in the terminal.

source ~/dashboard-env/bin/activate
cd /home/pi/Desktop/Object_Detection_Files
python dashboard.py

https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc:ss2025:group-e:object_detection_files.zip
https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc:ss2025:group-e:object_detection_files.zip
https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc:ss2025:group-e:object_detection_files.zip
https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc:ss2025:group-e:object_detection_files.zip
https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc:ss2025:group-e:object_detection_files.zip

2026/01/31 22:21 5/13 CarPi

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Results

by Nicole Alvarado (35983)

Code

Three Python scripts were developed as part of the system's functionality.

Object Detection1.
Vehicle Log2.
Dashboard3.

The object detection script (object_detection_final.py) uses OpenCV's DNN module with a pre-trained
SSD MobileNet model trained on the COCO dataset. It captures video input from the Pi camera,
identifies vehicles (car, bus, truck, motorbike), draws bounding boxes, and logs the counts into a CSV
file.

from picamera2 import Picamera2
import time
import os
from datetime import datetime
import csv
import cv2
import numpy as np
from scipy.spatial import distance as dist
from collections import OrderedDict

=== Load class names ===
classNames = []
classFile = "/home/aless/Desktop/Object_Detection_Files/coco.names"
with open(classFile, "rt") as f:
 classNames = f.read().rstrip("\n").split("\n")

=== Load model config and weights ===
configPath =
"/home/aless/Desktop/Object_Detection_Files/ssd_mobilenet_v3_large_coco_2020
_01_14.pbtxt"
weightsPath =
"/home/aless/Desktop/Object_Detection_Files/frozen_inference_graph.pb"

assert os.path.exists(classFile), f"Missing file: {classFile}"
assert os.path.exists(configPath), f"Missing file: {configPath}"
assert os.path.exists(weightsPath), f"Missing file: {weightsPath}"

=== Load the model ===
net = cv2.dnn_DetectionModel(weightsPath, configPath)
net.setInputSize(320, 320)
net.setInputScale(1.0 / 127.5)
net.setInputMean((127.5, 127.5, 127.5))

http://www.opengroup.org/onlinepubs/009695399/functions/time.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html
http://www.opengroup.org/onlinepubs/009695399/functions/assert.html

Last update: 2025/07/29
17:05 amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753801552

https://student-wiki.eolab.de/ Printed on 2026/01/31 22:21

net.setInputSwapRB(True)

=== Vehicle detection function ===
def getObjects(img, thres, nms, draw=True, objects=[]):
 classIds, confs, bbox = net.detect(img, confThreshold=thres,
nmsThreshold=nms)
 objectInfo = []

 if len(objects) == 0:
 objects = classNames

 if len(classIds) != 0:
 for classId, confidence, box in zip(classIds.flatten(),
confs.flatten(), bbox):
 className = classNames[classId - 1]
 if className in objects:
 objectInfo.append([box, className])
 if draw:
 cv2.rectangle(img, box, color=(0, 255, 0), thickness=2)
 cv2.putText(img, className.upper(), (box[0] + 10, box[1]
+ 30),
 cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
 cv2.putText(img, str(round(confidence * 100, 2)) + "%",
 (box[0] + 200, box[1] + 30),
 cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
 return img, objectInfo

=== Log object count to CSV ===
def log_vehicle_count(vehicle_type, total):
 with open("vehicle_log.csv", "a", newline='') as f:
 writer = csv.writer(f)
 writer.writerow([datetime.now().isoformat(), vehicle_type, total])

=== Centroid Tracker ===
class CentroidTracker:
 def __init__(self, maxDisappeared=20):
 self.nextObjectID = 0
 self.objects = OrderedDict()
 self.disappeared = OrderedDict()
 self.maxDisappeared = maxDisappeared
 self.counted = set()

 def register(self, centroid):
 self.objects[self.nextObjectID] = centroid
 self.disappeared[self.nextObjectID] = 0
 self.nextObjectID += 1

 def deregister(self, objectID):
 del self.objects[objectID]
 del self.disappeared[objectID]

2026/01/31 22:21 7/13 CarPi

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 def update(self, inputCentroids):
 if len(inputCentroids) == 0:
 for objectID in list(self.disappeared.keys()):
 self.disappeared[objectID] += 1
 if self.disappeared[objectID] > self.maxDisappeared:
 self.deregister(objectID)
 return self.objects

 if len(self.objects) == 0:
 for i in range(0, len(inputCentroids)):
 self.register(inputCentroids[i])
 else:
 objectIDs = list(self.objects.keys())
 objectCentroids = list(self.objects.values())
 D = dist.cdist(np.array(objectCentroids), inputCentroids)
 rows = D.min(axis=1).argsort()
 cols = D.argmin(axis=1)[rows]

 usedRows = set()
 usedCols = set()

 for (row, col) in zip(rows, cols):
 if row in usedRows or col in usedCols:
 continue
 objectID = objectIDs[row]
 self.objects[objectID] = inputCentroids[col]
 self.disappeared[objectID] = 0
 usedRows.add(row)
 usedCols.add(col)

 unusedRows = set(range(0, D.shape[0])).difference(usedRows)
 for row in unusedRows:
 objectID = objectIDs[row]
 self.disappeared[objectID] += 1
 if self.disappeared[objectID] > self.maxDisappeared:
 self.deregister(objectID)

 for col in set(range(0, D.shape[1])).difference(usedCols):
 self.register(inputCentroids[col])

 return self.objects

=== Main application ===
if __name__ == "__main__":
 picam2 = Picamera2()
 picam2.configure(picam2.create_preview_configuration(main={"format":
"RGB888", "size": (640, 480)}))
 picam2.start()
 time.sleep(1)

http://www.opengroup.org/onlinepubs/009695399/functions/time.html

Last update: 2025/07/29
17:05 amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753801552

https://student-wiki.eolab.de/ Printed on 2026/01/31 22:21

 # Now also counting bicycle and person
 detectable_classes = ["car", "bus", "truck", "motorbike", "bicycle",
"person"]
 object_totals = {cls: 0 for cls in detectable_classes}
 line_x = 320 # vertical line position
 tracker = CentroidTracker()
 id_to_type = {}

 while True:
 img = picam2.capture_array()
 result, objectInfo = getObjects(img, 0.45, 0.2,
objects=detectable_classes)

 # Draw vertical counting line
 cv2.line(img, (line_x, 0), (line_x, 480), (255, 0, 255), 2)

 # Get centroids of current detections
 detections = []
 for box, name in objectInfo:
 x, y, w, h = box
 detections.append((name, (x + w // 2, y + h // 2)))

 centroids = np.array([c for _, c in detections])
 objects = tracker.update(centroids)

 for objectID, centroid in objects.items():
 cx, cy = centroid
 cv2.circle(img, (cx, cy), 4, (0, 0, 255), -1)
 cv2.putText(img, f"ID {objectID}", (cx - 10, cy - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)

 # Match ID with detected type
 if objectID not in id_to_type:
 for (name, (dx, dy)) in detections:
 if abs(cx - dx) < 30 and abs(cy - dy) < 30:
 id_to_type[objectID] = name
 break

 # Count if crossing vertical line
 if objectID not in tracker.counted:
 if cx > line_x - 15 and cx < line_x + 15:
 obj_type = id_to_type.get(objectID)
 if obj_type:
 object_totals[obj_type] += 1
 tracker.counted.add(objectID)
 log_vehicle_count(obj_type, object_totals[obj_type])

 # Display total and per-class counts
 total = sum(object_totals.values())
 cv2.putText(img, f"Total Counted: {total}", (20, 40),

http://www.opengroup.org/onlinepubs/009695399/functions/abs.html
http://www.opengroup.org/onlinepubs/009695399/functions/abs.html

2026/01/31 22:21 9/13 CarPi

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 0), 2)
 y_offset = 80
 for obj_type in detectable_classes:
 label = f"{obj_type.title()}: {object_totals[obj_type]}"
 cv2.putText(img, label, (20, y_offset),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2)
 y_offset += 30

 cv2.imshow("Output", img)
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

 cv2.destroyAllWindows()

The vehicle_log.csv serves as the system's central data log for vehicle detection events. It is
automatically generated and updated by the object detection script each time a vehicle is recognized
in the camera feed. Each entry in the file consists of a timestamp, the type of vehicle detected (e.g.,
car, bus, truck, motorbike), and a numeric count (typically per detection). This log acts as the primary
data source for the dashboard script, which reads and processes it in real time to generate
visualizations. The file is stored locally in the same directory as the scripts and can be reset via the
dashboard interface to clear all logged entries. The log of the data looks like this:

2025-07-28T16:04:24.174465,car,14
2025-07-28T16:04:27.597785,car,15
2025-07-28T16:04:30.165927,car,16
2025-07-28T16:04:34.733430,car,17
2025-07-28T16:04:46.082917,car,18
2025-07-28T16:05:21.296150,car,19
2025-07-28T16:05:27.438530,car,20
2025-07-28T16:05:32.466989,car,21
2025-07-28T16:05:46.877602,car,1
2025-07-28T16:05:58.076430,car,2
2025-07-28T16:06:20.091424,car,3
2025-07-28T16:06:29.027871,person,1
2025-07-28T16:06:43.929392,car,4
2025-07-28T16:07:02.028061,car,1
2025-07-28T16:07:05.071340,car,2
2025-07-28T16:07:07.032200,car,3
2025-07-28T16:07:18.122763,car,4
2025-07-28T16:07:29.345924,car,5
2025-07-28T16:07:46.129527,car,6
2025-07-28T16:08:30.797174,person,1
2025-07-28T16:08:34.676911,person,2
2025-07-28T16:08:39.359371,person,3

The dashboard script (dashboard.py) creates a local web server using Flask and displays a real-time
plot of vehicle counts using Plotly. The data is read from the vehicle_log.csv file, and the dashboard
includes a reset button and the custom logo of CarPi.

from flask import Flask, render_template_string, redirect, url_for
import pandas as pd

Last update: 2025/07/29
17:05 amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753801552

https://student-wiki.eolab.de/ Printed on 2026/01/31 22:21

import plotly.graph_objs as go
import plotly.offline as pyo
from collections import Counter
import os
from datetime import datetime

app = Flask(__name__)

@app.route("/")
def index():
 if not os.path.exists("vehicle_log.csv") or
os.path.getsize("vehicle_log.csv") == 0:
 return """
 <html><body style='font-family:sans-serif;padding:2em;text-
align:center'>
 <h2>No data yet</h2>
 <p>Waiting for vehicle detections...</p>
 <a href='/' style='display:inline-block;margin-
top:1em;'>Refresh
 </body></html>
 """

 df = pd.read_csv("vehicle_log.csv", names=["Time", "Vehicle_Type",
"Count"])
 df["Time"] = pd.to_datetime(df["Time"])

 fig = go.Figure()
 total = df.groupby("Time").size().cumsum()
 fig.add_trace(go.Scatter(x=total.index, y=total.values,
mode='lines+markers', name='Total Vehicles'))

 for vtype in df["Vehicle_Type"].unique():
 sub = df[df["Vehicle_Type"] ==
vtype].groupby("Time").size().cumsum()
 fig.add_trace(go.Scatter(x=sub.index, y=sub.values,
mode='lines+markers', name=vtype.title()))

 fig.update_layout(
 title="Live Vehicle Count",
 template="plotly_white",
 xaxis_title="Time",
 yaxis_title="Cumulative Count",
 legend=dict(orientation="h", y=-0.3),
 margin=dict(t=60, b=40)
)

 graph_html = pyo.plot(fig, output_type="div", include_plotlyjs="cdn")

 # Summary bar
 totals = Counter(df["Vehicle_Type"])

2026/01/31 22:21 11/13 CarPi

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 total_count = sum(totals.values())

 summary_html = "<div style='display:flex; flex-wrap:wrap; gap:20px;
margin-bottom:20px;'>"
 summary_html += f"<div class='summary-card'><h3>Total
Vehicles</h3><p>{total_count}</p></div>"
 for vtype, count in totals.items():
 summary_html += f"<div class='summary-
card'><h3>{vtype.title()}</h3><p>{count}</p></div>"
 summary_html += "</div>"

 html = f"""
 <html>
 <head>
 <title>CarPi Dashboard</title>
 <meta http-equiv="refresh" content="10">
 <style>
 body {{
 font-family: Arial, sans-serif;
 background: #f9f9f9;
 padding: 20px;
 color: #333;
 }}
 .header {{
 display: flex;
 align-items: center;
 gap: 15px;
 margin-bottom: 20px;
 }}
 .header img {{
 width: 60px;
 height: auto;
 }}
 .summary-card {{
 background: #ffffff;
 padding: 15px 20px;
 border-radius: 8px;
 box-shadow: 0 2px 6px rgba(0,0,0,0.1);
 min-width: 120px;
 text-align: center;
 }}
 h1 {{
 font-size: 28px;
 margin: 0;
 }}
 .top-bar {{
 display: flex;
 justify-content: space-between;
 align-items: center;
 margin-bottom: 10px;
 }}

Last update: 2025/07/29
17:05 amc:ss2025:group-e:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753801552

https://student-wiki.eolab.de/ Printed on 2026/01/31 22:21

 .reset-button {{
 background: #e74c3c;
 border: none;
 color: white;
 padding: 10px 15px;
 border-radius: 5px;
 cursor: pointer;
 font-size: 14px;
 }}
 </style>
 </head>
 <body>
 <div class='top-bar'>
 <div class='header'>
 <img src="/static/carpi_logo.png" alt="CarPi Logo"
width="60">
 <h1>CarPi Dashboard</h1>
 </div>
 <form method="post" action="/reset">
 <button class="reset-button" type="submit">Reset
Log</button>
 </form>
 </div>
 {summary_html}
 {graph_html}
 </body>
 </html>
 """
 return render_template_string(html)

@app.route("/reset", methods=["POST"])
def reset_log():
 if os.path.exists("vehicle_log.csv"):
 with open("vehicle_log.csv", "w") as f:
 pass
 return redirect(url_for("index"))

if __name__ == "__main__":
 app.run(host="0.0.0.0", port=5000)

Discussion & Conclusion

by Jonathan Stuermlinger (34602) & Ben Koellner (34603)

While our traffic monitoring system functions reliably in its current form, there were several lessons
learned throughout the project. Initially, our goal was to develop the system using the Raspberry Pi 5
in combination with an AI Hat (an additional Raspberry Pi module designed to enhance computing
performance) and the YOLO algorithm for advanced object detection. However, due to repeated
compatibility and setup issues, we were unable to make the AI Hat fully operational and instead opted

2026/01/31 22:21 13/13 CarPi

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

for an alternative approach based on OpenCV and COCO (Common Objects in Context) libraries. An
important takeaway from this experience is that a more successful integration of the AI Hat and YOLO
framework would likely have required reaching out for external support early on, especially to better
understand the specific requirements and limitations of the Raspberry Pi 5 and the AI Hat. Despite
these challenges, the alternative solution we implemented proved to be a solid and functional
approach for basic vehicle detection and counting.

However, the system is not without limitations. For example, detecting larger vehicles such as buses
proved inconsistent, especially depending on the camera angle and environmental conditions. In our
case, the monitoring frame was set up between trees, which occasionally interfered with object
detection.

Beyond technical issues, permanent deployment of such a system would also require consideration of
legal aspects, such as regulations around filming public roads and ensuring privacy compliance.

Currently, the system logs data locally, and access is limited to devices on the same network. A long-
term implementation would require modifications to reset the vehicle count periodically (e.g., every 5
minutes or more frequently during peak hours) and to store the data in a publicly accessible
database. Data visualization could be improved once sufficient data is collected for meaningful
analysis.

Despite these challenges, the project demonstrates that a low-cost and accessible traffic monitoring
solution is possible without specialized AI hardware. With further development, such a system could
be adapted for real-world use cases in traffic analysis, planning, or environmental studies.

Video

References

-insert info

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753801552

Last update: 2025/07/29 17:05

https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-e:start&rev=1753801552

	CarPi
	Introduction
	Material & Methods
	Hardware Components
	Hardware Assemblance
	System Setup
	Raspberry Pi Initialization
	Installing OpenCV and Required Packages
	Creating a Python Virtual Environment for the dashboard

	Files Setup and Execution

	Results
	Code

	Discussion & Conclusion
	Video
	References

