
2025/07/31 17:53 1/11 Mini Smart Weather Station

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Mini Smart Weather Station

Khayman Fernandes Carneiro (29478) - Bibi Zeenat Malika Choolun (30797) - Sultana Shamsunnahar
(33852)

1.Introduction

(by Sultana Shamsunnahar)

In the sectors of agriculture, climate analysis and public health environmental monitoring plays a
really important and potential role. However, A usual weather station is so costly, bulky, and not so
accessible to smaller-scale users. It is advance with the Internet of Things (IoT) technology, so there is
an opportunity to develop low-cost, compact and more accessible solutions that can help with real-
time environmental data collection and analysis. The main purpose of this project is to design and
build a prototype of a Smart Mini Weather Station which will be capable of monitoring the key
environmental parameters such as air temperature, humidity, sunlight intensity and soil moisture. Our
system utilizes an ESP32S3 microcontroller to collect and transmit data by using the MQTT protocol,
making it more suitable for remote monitoring. In addition, the project idea is to incorporate a live
web-based dashboard for real-time visualization, and also for the historical analysis it supports data
logging via a backend database. With our project we will try to explain practical applications of
measurement and control systems and highlight the integration of sensors, microcontrollers, and
communication protocols within an IoT-based monitoring framework.

2. Materials and Methods

(by Sultana Shamsunnahar)

2.1 System Overview

The system architecture is composed of:

•A microcontroller unit (MCU) for control and communication

•A set of environmental sensors for data acquisition

•A communication protocol for data transmission

•A web interface for visualization

•An optional database for data storage

Last update: 2025/07/29
23:57 amc:ss2025:group-g:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-g:start&rev=1753826238

https://student-wiki.eolab.de/ Printed on 2025/07/31 17:53

2.2 Materials
Component Purpose
ESP32 Microcontroller Central processing unit with built-in WiFi
DHT11 / DHT22 Sensor Measurement of air temperature and humidity
Light Dependent Resistor (LDR) Measurement of ambient light intensity
Capacitive Soil Moisture Sensor Detection of soil moisture content
Power Supply (Rechargeable Battery) Portable power source for outdoor operation
MQTT Broker (Ubidots) Lightweight message server for data transmission
Web Dashboard (Ubidots) Visualization and storage of data
Arduino IDE Development and upload environment for ESP32 code
EasyEDA Circuit design and diagram creation tool

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-g%3Astart&media=amc:ss2025:group-g:esp32_iot_microcontroller.jpeg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-g%3Astart&media=amc:ss2025:group-g:dht22_digital_temperature_and_humidity_sensor.jpeg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-g%3Astart&media=amc:ss2025:group-g:4000_mah_lithium_polymer_rechargeable_battery.jpeg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-g%3Astart&media=amc:ss2025:group-g:dsc0194.jpg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-g%3Astart&media=amc:ss2025:group-g:dsc0190.jpg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-g%3Astart&media=amc:ss2025:group-g:dsc0191.jpg

2025/07/31 17:53 3/11 Mini Smart Weather Station

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

2.3 Methods

2.3.1 Sensor Integration

The ESP32 was linked to each sensor via GPIO (General Purpose Input/Output) pins. Digital
measurements of temperature and also humidity are provided by the DHT sensor that we used in the
project. Moreover, a voltage divider circuit was used to connect the LDR in order to measure the
intensity of light as an analog input. The analog signal produced by the capacitive soil moisture
sensor is proportionate to the amount of water in the soil.

2.3.2 Data Acquisition and Transmission

The Arduino IDE was used to program the ESP32 to read the data from every sensor at predetermined
intervals. To facilitate wireless transmission over WiFi, the gathered data was converted into MQTT
messages and published to a distant MQTT Broker; in this case, Ubidots.

2.3.3 Data Visualization

Ubidots was selected to be the platform for the dashboard since it provided both MQTT broker and
dashboard services simultaneously, as well as some limited database storage. Both web and mobile
and devices can access more easily and use the dashboard.

2.3.4 Power Supply and Portability

The system has two power modes: battery pack function for adoption in remote or outdoor areas, and
USB power for indoor use. Longer battery life is guaranteed by the ESP32's low power consumption.

3. Results

(by Khayman F. Carneiro)

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc%3Ass2025%3Agroup-g%3Astart&media=amc:ss2025:group-g:dsc0192.jpg

Last update: 2025/07/29
23:57 amc:ss2025:group-g:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-g:start&rev=1753826238

https://student-wiki.eolab.de/ Printed on 2025/07/31 17:53

The prototype (Figure 3.1) successfully read the data collected from the sensors and sent it over
MQTT to the Ubidots MQTT broker; the data received by the server was then available to be displayed
in the dashboard (Figure 3.2). The air temperature and humidity sensor used was a DHT11 unit since
it showed more accurate results than the DHT22 unit available when compared to a more expensive
reference unit. The microcontroller used was the ESP32S3 connected directly to the host computer,
since the more specific board did not function as intended, as will be discussed in the next chapter.

The code developed for it is shown below with comments where needed.

2025/07/31 17:53 5/11 Mini Smart Weather Station

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

#include <DHT.h>
#include <WiFi.h>
#include <MQTTClient.h>
#include <UbidotsESPMQTT.h>

// Defining sensor variables
#define DHTPIN 4
#define DHTTYPE DHT11
#define SOILPIN 5
#define LDRPIN 6
DHT dht(DHTPIN, DHTTYPE);

// Defining MQTT/Dashboard variables
#define TOKEN "BBUS-elnIUM3JpLzaEsk3gpvkznDG8GCZUV"
#define WIFINAME "FRITZ!Box 7520 TE_EXT"
#define WIFIPASS "Coffee.Luna"
#define DEVICE_LABEL "esp32-mcu"
#define VAR_LABEL_1 "air_temp"
#define VAR_LABEL_2 "air_hum"
#define VAR_LABEL_3 "soil_moist"
#define VAR_LABEL_4 "light_int"
Ubidots client(TOKEN);
bool connected = false;

// Defining sleep variables
#define uS_FACTOR 1000000
#define PUBLISH_FREQUENCY 60
RTC_DATA_ATTR int bootCount = 0;

const int airStd = 3550;
const int waterStd = 1560;

Last update: 2025/07/29
23:57 amc:ss2025:group-g:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-g:start&rev=1753826238

https://student-wiki.eolab.de/ Printed on 2025/07/31 17:53

int soilMoistPerc = 0;
int soilMoist = 0;
int hum = 0;
float tempC = 0;
int light = 0;
int lightPerc = 0;
const int minLight = 0;
const int maxLight = 3409;

// Auxiliary Function for Ubidots connection
void callback(char *topic, byte *payload, unsigned int length) {
 Serial.print("Message arrived [");
 Serial.print(topic);
 Serial.print("] ");
 for (int i = 0; i < length; i++) {
 Serial.print((char)payload[i]);
 }
 Serial.println();
}

void soilMoistPrint(int soil_moisture, int air_standard, int water_standard)
{
 soilMoistPerc = map(soil_moisture, air_standard, water_standard, 0, 100);

 if (soilMoistPerc < 0) {
 soilMoistPerc = 0;
 }
 else if (soilMoistPerc > 100) {
 soilMoistPerc = 100;
 }
 Serial.print("Soil Moisture: ");
 Serial.print(soilMoistPerc);
 Serial.println("%");
 Serial.println("---------------------------");
}

void dhtOutPrint(int humidity, float temperature_C) {
 if (isnan(humidity) | isnan(temperature_C)) {
 Serial.println("Reading Failed!");
 }
 else {
 Serial.print("Humidity: ");
 Serial.print(humidity);
 Serial.print("%");
 Serial.print(" | ");
 Serial.print("Temperature: ");
 Serial.println(temperature_C);

 }

2025/07/31 17:53 7/11 Mini Smart Weather Station

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

}

void lightOutPrint(int light, int minimum, int maximum) {
 lightPerc = map(light, minimum, maximum, 0, 100);
 Serial.print("Light Intensity: ");
 Serial.print(lightPerc);
 Serial.println("%");
}

void setup() {
 // put your setup code here, to run once:
 Serial.begin(115200);
 delay(1000);
 dht.begin();

 ++bootCount;
 Serial.println("Boot number " + String(bootCount));
 esp_sleep_enable_timer_wakeup(PUBLISH_FREQUENCY * uS_FACTOR);

 client.setDebug(true);
 client.wifiConnection(WIFINAME, WIFIPASS);
 client.begin(callback);

 if (!connected) {
 Serial.println("Not connected, attempting to connect");
 connected = client.connect();
 }
 Serial.println(connected);

 light = analogRead(LDRPIN);
 //lightOutPrint(light, minLight, maxLight); Debugging method for LDR
 hum = dht.readHumidity();
 tempC = dht.readTemperature();
 //dhtOutPrint(hum, tempC); Debugging method for DHT sensor

 soilMoist = analogRead(SOILPIN);
 //soilMoistPrint(soilMoist, airStd, waterStd); Debugging method for soil
moisture sensor
 if (connected) {
 client.add(VAR_LABEL_1, tempC);
 client.add(VAR_LABEL_2, hum);
 client.add(VAR_LABEL_3, soilMoistPerc);
 client.add(VAR_LABEL_4, lightPerc);
 client.ubidotsPublish(DEVICE_LABEL);
 client.loop();
 }

 Serial.println("Going to sleep");
 Serial.flush();
 esp_deep_sleep_start();

Last update: 2025/07/29
23:57 amc:ss2025:group-g:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-g:start&rev=1753826238

https://student-wiki.eolab.de/ Printed on 2025/07/31 17:53

}

void loop() {
 // put your main code here, to run repeatedly:
}

4. Discussion

(by Khayman F. Carneiro)

4.1 Discussion of Results and Issues Encountered

The first prototype worked as intended; data was collected from the sensors, organized and sent to
the Ubidots server and then displayed in a dashboard. This however had limitations: the board was
connected to a host computer for power and the humidity sensor was not the ideal option since the
DHT22 is a lot more accurate and has better range of measurements, according to Adafruit. In the
scope of this project, where the project is supposed to be set up outside and data to be sent over
MQTT to a server, wireless operation is of utmost importance. Based on this, and the fact that the
frequency of measurement did not need to be very high, the use of the low power modes available on
the ESP32 chips is very advantageous to the battery life of the project, allowing for it to be on the
field taking measurements for a lot longer times since, when in deep sleep, the microcontroller and its
peripherals can draw currents as low as 8.4uA (Espressif, n.d.).

In order to fulfill these requirements a few components were acquired:

a Firebeetle ESP32 IoT microcontroller;
a DHT22 sensor unit;
a Lithium battery pack (4000mAh).

The microcontroller by Firebeetle is optimized for low power usage, making it ideal for such a project.
Asides that the MCU has a JST1.25 connector for a battery pack and built-in battery charging via USB,
which settled it as the perfect candidate for the weather station. The new board however did not
work, as there was an error of communication between the computer and the board and, although the
board was recognized by the computer correctly, with the right drivers installed, communication could
not be set up even if the board was forced into bootloader mode by connecting GPIO0 to ground and
pressing the reset button. That said, after extensive research and testing, the microcontroller appears
to be faulty and needs to be returned, so proper evaluation of the performance of the project in the
field so far is not possible.

As previously mentioned, the DHT22 sensor showed more deviation in its measurements than the
DHT11 unit used in the first version of the prototype (when compared to a reference measurement
unit), so the latter sensor was kept in place. Even after testing with a pull-up resistor to keep the
signal coming from the sensor high, as it is mentioned in the material for AMC 2020 (available here),
the measurements were deviating similarly, at around 20% less relative humidity measured and
around 4ºC over the reference values. This could be due to sensor self heating or a malfunction, since
the DHT units in general tend to vary a lot regarding their reliability and quality control.

https://wiki.eolab.de/doku.php?id=amc2020:group_n:dht22

2025/07/31 17:53 9/11 Mini Smart Weather Station

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Using Ubidots as a platform for MQTT transmission and storage proved to be really convenient since
there was no separate configuration for the MQTT Broker and the dashboard and everything was
seamlessly integrated. The modularity of the platform allows for many devices to be added and
managed, with each having their own separate variable spaces. Some of the issues encountered in
the platform however are the lack of a truly secure way to connect the device to the broker, as it
requires that the token is hardcoded. In addition to that there is the limitations of the free account,
which, although minor compared to other options such as Amazon Web Services or FlowFuse, affected
the testing procedures of the prototypes, specially the limitation on the amount of information that
can be sent per day. This is not as limiting however for actual project operation since the
measurements and information sent would be done hourly, meaning the maximum limit should not be
reached.

4.2 Possibility for Future Improvements

There are many improvements that could be done to the project, both in hardware and software.
Regarding hardware, the quality of the sensors could use improvements, since the ones used now are
low cost and not very accurate, specially suitable for home projects and proofs of concept. The DHT
sensor could be substituted for a more reliable BME280, which would also allow for measurement of
pressure; the LDR could be replaced by a BH1750 sensor for greater precision in values, although for
the purposes of this project, where measurements of light do not need to be as precise, the sensor
would be far better than necessary. The same can be said about the soil moisture sensor, which could
be substituted by a more advanced probe soil sensor for readings such as pH as well as soil moisture
content. All of these improvements, specially the probe sensor, would increase the price of the project
but also decrease the error in the measurements. Another possibility of improvement, regarding
battery life, is the use of a miniature solar panel as to recharge the battery during the day; in
conjunction with a microcontroller with appropriate low power modes, the devices could last for
months, provided the battery is sufficiently large and there is enough sun to recharge it.

Regarding software, there are some different options that could also work well, such as the use of
Node-RED, a SQL or Non-SQL database, and another dashboard web server such as Grafana, as to
make the project more substantial and improve historic analysis capabilities, as well as scalability if
multiple devices are used in different locations at the same time. Another idea would be to use
instead of a timer to turn on the MCU from deep sleep, leaving the Wi-Fi connection on (using modem
sleep) and sending a trigger to the board remotely when the measurement is needed.

This prototype mostly is a proof of concept of the viability and ease of use of such a device. If
developed and refined, an enclosure could be designed as to protect the contents of the box while at
the same time allowing for the proper measurements to be done, meaning an opening for the light
sensor and concerns with heating of the components which could affect the temperature readings.

5. Conclusion

(by Bibi Zeenat Malika Choolun)

The case study of the Smart Mini Weather Station illustrates the integration of sensors,
communications of IoT devices, and real-time data display as a low-cost and practical system for
environmental monitoring. The prototype was able to gather the requisite data like air temperature,

Last update: 2025/07/29
23:57 amc:ss2025:group-g:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-g:start&rev=1753826238

https://student-wiki.eolab.de/ Printed on 2025/07/31 17:53

humidity, light intensity, soil moisture, and winds using the ESP32 microcontroller and DHT sensors
and using the MQTT protocol, transmitted the information to the web-based dashboard. This project
was useful in demonstrating core concepts of measurement and control systems, as this device
literally put those concepts to work. It showed the viability of using low-powered electronics and
simple sensors for better environmental monitoring. This system has the potential to be adapted for
smart agriculture, in weather forecasting, or in educational institutions with further enhancements. In
a nutshell, this project was useful in creating real-world simulations with the Internet of Things, sensor
networks, and data systems, as the knowledge is very useful in a technology-driven economy.

The prototype Smart Mini Weather Station had some noteworthy features, but the following
limitations should also be considered.

* Power Source: An obvious concern is the device’s first iteration, powered by a computer’s USB port,
which makes the device unsuitable for outdoor or remote usage. * Sensor accuracy: The older version
of the device was outfitted with a DHT11 sensor, which had inferior accuracy. * Management of
Battery Life and Power: Integrate a rechargeable battery while utilizing the low power modes of the
ESP32 to make the device portable and conserve energy. * Protective Casing: Create a protective
enclosure of the device that will guard it from rain, dust, and extreme temperatures. * Alerts: Notify
users of issues such as dry soil and perform advanced data analysis, suggesting resolutions based on
the collected data. * Enhanced Dashboard: Add mobile compatibility, as well as increase interaction
via charts, trends, and data download capabilities to the dashboard. * Enhanced Functionality:
Connect multiple stations to monitor wider regions such as farms or school campuses.

Explanation Video

The videos showing the explanation and demo are zipped below. Also included is the schematic file
showing how everything is connected.

final_project_folder.zip

References

(by Sultana Shamsunnahar)

1.Anemometer Working Principle Circuit Digest. (2019). *Anemometer - Wind Speed Sensor Working
and Applications*.[https://circuitdigest.com/tutorial/anemometer-working-and-applications]

2.Fritzing – Circuit Design Tool Fritzing.org. (n.d.). *Fritzing: Open-source Electronics Design
Software*.[https://fritzing.org/]

(by Bibi Zeenat Malika Choolun)

3.Pandey, S. K., Srivastava, S., Singh, V. K., & Kumar, V. (2025, May 24). ESP32-Based Weather
Station. ResearchGate. ResearchGate

4.Ganesan, S., Lean, C. P., Li, C., Yuan, K. F., et al. (2024). IoT-Enabled Smart Weather Stations:

https://circuitdigest.com/tutorial/anemometer-working-and-applications]
https://fritzing.org/]

2025/07/31 17:53 11/11 Mini Smart Weather Station

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Innovations, Challenges, and Future Directions. Malaysian Journal of Science and Advanced
Technology. ResearchGate+1mjsat.com.my+1

(by Khayman F. Carneiro)

5.Smarthon. (n.d.). Digital light sensor. Smarthon Docs. Retrieved July 29, 2025, from
https://smarthon-docs-en.readthedocs.io/en/latest/Sensors_and_actuators/Digital_Light_sensor.html

6.Espressif Systems. (n.d.). Boot mode selection. Espressif Documentation. Retrieved July 29, 2025,
from
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/boot-mode-selection.html

7.Espressif Systems. (2023). ESP32 datasheet (Version 3.6).
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

8.Last Minute Engineers. (n.d.). ESP32 sleep modes & power consumption. Retrieved July 29, 2025,
from https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/

9.Espressif Systems. (n.d.). Current consumption measurement for ESP32 modules. Espressif
Documentation. Retrieved July 29, 2025, from
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/current-consumption-measure
ment-modules.html

10.Adafruit. (n.d.). DHT11/22 temperature and humidity sensors. Adafruit Learning System. Retrieved
July 29, 2025, from https://learn.adafruit.com/dht/overview

11.Espressif Systems. (n.d.). ESP32 sleep modes. Espressif Documentation. Retrieved July 29, 2025,
from
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/sleep_modes.html

—

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-g:start&rev=1753826238

Last update: 2025/07/29 23:57

https://smarthon-docs-en.readthedocs.io/en/latest/Sensors_and_actuators/Digital_Light_sensor.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/boot-mode-selection.html
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/current-consumption-measurement-modules.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/current-consumption-measurement-modules.html
https://learn.adafruit.com/dht/overview
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/sleep_modes.html
https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-g:start&rev=1753826238

	Mini Smart Weather Station
	1.Introduction
	2. Materials and Methods
	2.1 System Overview
	2.2 Materials
	2.3 Methods
	2.3.1 Sensor Integration
	2.3.2 Data Acquisition and Transmission
	2.3.3 Data Visualization
	2.3.4 Power Supply and Portability

	3. Results
	4. Discussion
	4.1 Discussion of Results and Issues Encountered
	4.2 Possibility for Future Improvements

	5. Conclusion
	Explanation Video
	References

