2026/01/29 01:07 1/4 Smart Trash Bin Monitoring System

STDOUT/STDERR # 1. Introduction Every year, inefficient waste-collection leads to unnecessary
pickups, added CO2 emissions, and overflowing public bins. Our Smart Trash-Bin Fill-Level
Monitoring System uses a VL53L0X Time-of-Flight sensor mounted inside a 41 x 35 x 60 cm3 bin to
measure the fill height, displays the percentage full on an SH1106 OLED, and—when a user-
configurable threshold is exceeded—sends alerts via a Telegram bot. For outdoor deployment, we've
upgraded the setup with:

- A different Wi-Fi server (Node-RED on 192.168.10.50) - A GPS module (for geo-tagged alerts) - A
solar-rechargeable Li-Po power supply - A 3D-printed, weatherproof enclosure

This document walks through each step—hardware assembly (breadboard layout), Arduino IDE
firmware, Node-RED flow, Telegram-bot config, and ESP32 simulation—so you can reproduce and
extend the system yourself.

2. Materials & System Overview

2.1. Hardware Components

Component Purpose

ESP32-S3-DevKitC-1 Main MCU, Wi-Fi, GPIOs

VL53L0X ToF sensor Measures distance from bin top to contents
SH1106 128x64 I1>)C OLED . . o

(U8g2 lib) Displays distance (cm) & fill (%)

LED (GPIO 2) Visual “almost full” warning

GPS module (e.g. NEO-6M) Provides latitude/longitude for outdoor alerts

Li-Po battery + solar charge IC |Outdoor power source; charges from solar panel

Weatherproof housing with mounting points for sensor, display,
solar panel

Wires, breadboard, connectors |Prototyping and wiring

3D-printed enclosure

*(1 Please confirm the GPS module part number and its RX/TX pin mapping so | can update the wiring
diagram precisely.)*

2.2. Software Components - Arduino IDE (v2.x) - Libraries:

“Adafruit VL53L0X" - Time-of-Flight sensor
"U8g2lib™ - SH1106 OLED driver

"WiFi.h™ / "HTTPClient.h" - Wi-Fi & HTTP POST
"TinyGPSPlus.h™ - GPS parsing
“UniversalTelegramBot.h™ - Telegram Bot API

vk wNh =

- Node-RED (v3.x) on 192.168.10.50:1880 — receives HTTP alerts, dashboards fill percentage, logs
events - Telegram Bot (“TrashAlertBot”) configured with token “xxxx:YYYY" and chat ID
-1001234567890°

3. Hardware Assembly

3.1. Breadboard Layout 1. Power rails: +5 V from Li-Po-Solar charger to 5 V rail; 3.3 V regulator
feeding 3.3 V rail. 2. ESP32: VIN « 5V, GND « GND, SDA « GPIO 8, SCL « GPIO 9. 3. VL53L0X: VCC
« 3.3V, GND « GND, SDA/SCL as above. 4. OLED (SH1106): VCC « 3.3 V, GND « GND, SDA/SCL as
above. 5. GPS module:

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29
01:04
1. VCC«5V
2. GND « GND
3. TX « ESP32 RX (GPIO 167?)
4. RX « ESP32 TX (GPIO 177)

amc:ss2025:group-t:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-t:start&rev=1753743842

e (i Please verify which GPIOs you wired for GPS TX/RX.)*
6. LED: Anode « GPIO 2 (with 330 Q resistor), Cathode « GND.

<figure>

<figcaption>Figure 1. Breadboard layout schematic.</figcaption>

</figure>
4. Arduino IDE Firmware

Below is the main sketch. Please replace "YOUR SSID", "YOUR PASS’, "NODE_RED URL', and
"BOT _TOKEN" with your actual credentials.

" cpp #include <Wire.h> #include <Adafruit VL53L0X.h> #include <U8g2lib.h> #include <WiFi.h>
#include <HTTPClient.h> #include <TinyGPSPlus.h> #include <UniversalTelegramBot.h>

#define 12C_SDA 8 #define 12C_SCL 9 #define LED_PIN 2
#define BIN_HEIGHT_CM 60.0 #define DISTANCE_OFFSET _CM -3.0

Wi-Fi const char* ssid = “YOUR_SSID”; const char* password = “YOUR_PASS”; Node-RED endpoint
const char* alert_url = “http://192.168.10.50:1880/bin-alert”;

GPS on Seriall HardwareSerial gpsSerial(1); TinyGPSPlus gps; Telegram const char* telegram_token =
“BOT_TOKEN"; String chat_id = “-1001234567890";

U8G2 SH1106 128X64 NONAME F HW I2C display(U8G2_R0O, U8X8 PIN_NONE, I2C_SCL, I12C_SDA);
Adafruit_ VL53L0X lox = Adafruit VL53LO0X(); WiFiClientSecure secured_client; UniversalTelegramBot
bot(telegram_token, secured client);

unsigned long lastAlertTime = 0, lastSignalTime = 0; const unsigned long signalinterval = 30000;
float lastDistance = 0, lastPercentage = 0; bool updatesEnabled = true;

void setup() {

Serial.begin(115200);

Wire.begin(I2C SDA, I2C SCL);

display.begin();

display.clearBuffer(); display.setFont(u8g2 font ncenB08 tr);
display.drawStr(0,10,"Init Display"); display.sendBuffer();
if (!lox.begin()) { while(1); }

pinMode (LED PIN, OUTPUT);

gpsSerial.begin(9600, SERIAL 8N1, /*RX*/16, /*TX*/17);
WiFi.begin(ssid, password);

https://student-wiki.eolab.de/ Printed on 2026/01/29 01:07

http://192.168.10.50:1880/bin-alert

2026/01/29 01:07 3/4 Smart Trash Bin Monitoring System

while (WiFi.status() '= WL CONNECTED) { delay(500); Serial.print('.'); }
Serial.println("

WiFi OK");
secured client.setInsecure();

}
void loop() {

while (gpsSerial.available()) gps.encode(gpsSerial.read());
VL53LOX RangingMeasurementData t m;
lox.rangingTest(&m, false);
if (m.RangeStatus != 4) {
float d = m.RangeMilliMeter/10.0 + DISTANCE OFFSET CM;
float p = constrain(100.0 - (d/BIN HEIGHT CM)*100.0, 0.0, 100.0);
lastDistance = d; lastPercentage = p;
display.clearBuffer();
display.setCursor(0,12);
display.print("Dist: "); display.print(d,1); display.print("cm");
display.setCursor(0,30);
display.print("Fill: "); display.print((int)p); display.print("%s");
int w = map((int)p,0,100,0,120);
display.drawFrame(0,45,120,10);
display.drawBox(0,45,w,10);
display.sendBuffer();
if (p >= 80.0) {
digitalWrite(LED PIN, HIGH);
if (millis() - lastAlertTime > 15000) {
sendwWarning(d, p);
lastAlertTime = millis();
}
} else {
digitalWrite(LED PIN, LOW);
}
}

if (millis() - lastSignalTime > signallnterval) {
if (updatesEnabled) sendRegularUpdate(lastDistance, lastPercentage);
lastSignalTime = millis();
}
static unsigned long lastBot=0;
if (millis()-lastBot>1000) {
int n = bot.getUpdates(bot.last message received+1);
while (n) { handleNewMessages(n); n =
bot.getUpdates(bot.last message received+1); }
lastBot = millis();

}
delay(500);

}

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2025/07/29

01:04 amc:ss2025:group-t:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-t:start&rev=1753743842

... (sendWarning, sendRegularUpdate, handleNewMessages functions) """ (i Please verify your GPS-
serial pins (16/17 above) and your Node-RED URL.) # 5. Node-RED Flow Our Node-RED instance (on
192.168.10.50:1880) handles incoming HTTP POSTs at “/bin-alert™ and: 1. Parses JSON (distance,
fill_percentage, lat, Ing) 2. Conditions: if “fill_ percentage = 80" - send email or SMS, else just log 3.
Dashboard: updates a gauge & map node <figure> <img src="FIG2_NodeRED Flow.png” alt="“Node-
RED flow screenshot” /> <figcaption>Figure 2. Node-RED flow (HTTP In - JSON - switch -
dashboard).</figcaption> </figure> *(i Could you share the JSON of your function node or the exact
switch thresholds?)* # 6. Telegram Bot Configuration 1. Create bot with BotFather - get

"BOT TOKEN". 2. Invite to your group/channel - note the “chat _id". 3. Grant it message-reading
rights. <figure>
<figcaption>Figure 3. Telegram alerts when fill = 80%.</figcaption> </figure> Commands: -
‘/status’ — current distance & fill - /stop™ & */start’ — disable/enable periodic updates - “/help” —
list commands # 7. ESP32 Simulation We used Wokwi ESP32 simulator to validate I°C wiring and basic
code logic before hardware prototyping. <figure> <img src="“FIG4_ESP32_Simulation.png”
alt="ESP32 Wokwi simulation” /> <figcaption>Figure 4. ESP32 & VL53L0X simulated in
Wokwi.</figcaption> </figure> *(i Do you want me to include the ".wokwi" project JSON?)* # 8.
Results - OLED display shows real-time distance & fill bar (tested up to 85%). - LED lights when fill =
80%. - Telegram: immediate alert with geo-coordinates. - Node-RED dashboard: gauge & live map
plotting bin position. # 9. Discussion & Lessons Learned - GPS accuracy under canopy dropped to
+10 m; consider adding GLONASS support. - Power management: Li-Po lasted only ~2 days without
solar; MPPT charge controller recommended. - Network dropouts outdoors; a fallback to GSM/LTE or
LoRaWAN could improve reliability. - Sensor placement: VL53L0X needs a clear line of sight;
condensation inside enclosure can scatter photons. Potential improvements: - Solar panel + MPPT
for true off-grid operation - Adaptive sleep (ESP32 deep sleep between readings) - Multiple bins:
multiplex sensors or use mesh networking - Smart analytics: predict fill times & schedule pickups #
10. Conclusion This project demonstrates an end-to-end IoT solution for smart waste monitoring: from
hardware (ESP32, ToF, GPS, OLED) through firmware (Arduino IDE) to cloud dashboards (Node-RED)
and user alerts (Telegram). With a weatherproof 3D-printed enclosure and solar power, it can operate
outdoors, helping cities optimize waste collection and reduce emissions. # 11. References 1.
STMicroelectronics VL53LOX Datasheet 2. U8g2 SH1106 OLED driver -
https://github.com/olikraus/u8g2 3. TinyGPSPIlus Library - https://github.com/mikalhart/TinyGPSPIus
4. UniversalTelegramBot Library -
https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot 5. Node-RED Documentation -
https://nodered.org/docs/

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link: =
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-t:start&rev=1753743842 g

Last update: 2025/07/29 01:04

https://student-wiki.eolab.de/ Printed on 2026/01/29 01:07

https://github.com/olikraus/u8g2
https://github.com/mikalhart/TinyGPSPlus
https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot
https://nodered.org/docs/
https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-t:start&rev=1753743842

