
2026/01/29 01:07 1/4 Smart Trash Bin Monitoring System

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Smart Trash Bin Monitoring System

Introduction

Efficient waste management often requires knowing when a trash bin is nearing capacity to prevent
overflow and optimize collection schedules. This project implements a smart trash bin fill-level
monitoring system using an ESP32-S3-DevKitC-1 microcontroller and a Time-of-Flight (ToF) distance
sensor. The system continuously measures the distance from the bin’s lid to the top of the trash and
calculates the fill percentage of a waste bin (internal dimensions \~41×35×60 cm). An OLED display
provides real-time readouts of the distance and fill level, and an onboard LED gives a visual alert
when the bin is almost full. Additionally, the device connects via Wi-Fi to send periodic updates and
warnings to a Node-RED dashboard and a Telegram channel, enabling remote monitoring. This report
details the design and results of the system, including hardware/software implementation, operational
results, code logic, and a brief discussion of limitations and improvements.

Materials and Methods

Hardware Components: The project’s hardware centers on the Espressif ESP32-S3-DevKitC-1 board,
which serves as the main microcontroller. This board offers ample processing power and built-in Wi-Fi
for network connectivity, making it ideal for IoT applications. Key components include:

* *ESP32-S3-DevKitC-1 Microcontroller:* Handles sensor interfacing, data processing, and Wi-Fi
connectivity. The board’s onboard RGB LED (on GPIO48) is repurposed as a fill-level warning indicator.
* *Time-of-Flight Distance Sensor (VL53L0X or VL53L1X):* Short-range LiDAR module used to measure
the distance from the bin’s lid to the trash surface. The VL53L0X can measure distances up to \~2 m,
while the VL53L1X extends to \~4 m – both easily covering the \~0.6 m bin height. The sensor is
mounted at the top of the bin pointing downward. It communicates via I²C to provide high-resolution
distance readings in millimeters. * *SH1106 OLED Display (128×64 pixels, I²C):* Used to show the
current distance reading (in cm) and the calculated fill percentage on a compact screen. This provides
immediate visual feedback to users on site. * *Bin and Casing:* A standard trash bin (\~41 cm × 35
cm base, 60 cm tall) is used as the container. The electronics are mounted such that the ToF sensor
protrudes inside the lid, and the OLED is visible externally for easy reading. The ESP32 board and
sensor are powered via USB or a 5 V supply.

Wiring and Assembly: The circuit is straightforward since most components use the I²C bus. The
VL53L0X/VL53L1X sensor and the SH1106 OLED display are both connected to the ESP32’s I²C pins
(SDA and SCL) using the Wire library for communication. Power (3.3 V) and ground lines are shared
among the ESP32 and the I²C peripherals. The ESP32’s onboard LED is used for alerts (no extra wiring
needed for an external LED). During assembly, care was taken to firmly attach the sensor at the bin’s
top interior, ensuring it faces downwards without obstruction. The OLED is mounted on the outside or
the lid for visibility. The ESP32 board connects to a Wi-Fi network for data transmission but requires
no additional wiring for this (it uses its internal antenna).

Software and Libraries: The firmware is written in C++ using the Arduino framework. Development
and testing were done via the Arduino IDE. Several standard libraries facilitate the functionality:

* *Wire.h:* I²C communication library used to interface with the ToF sensor and OLED display. *
Adafruit_VL53L0X.h: Driver for the ST VL53L0X ToF sensor (also compatible with VL53L1X with
minor modifications) to initialize the sensor and read distance values. * *U8g2lib.h:* U8g2 graphics
library for driving the SH1106 OLED display. It provides functions to render text and graphics on the
screen over I²C. * *WiFi.h:* ESP32 Wi-Fi library to connect the device to a local wireless network
(providing internet/LAN connectivity for IoT features). * *HTTPClient.h:* Used to send HTTP requests to

Last update: 2025/07/29
01:05 amc:ss2025:group-t:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-t:start&rev=1753743955

https://student-wiki.eolab.de/ Printed on 2026/01/29 01:07

a backend (in this case, a Node-RED endpoint). The system uses this to *POST* or *GET* the bin
status to a Node-RED server, which can log data or trigger further actions. *
UniversalTelegramBot.h: Library for interacting with the Telegram Bot API. This enables the ESP32
to send messages or alerts to a predefined Telegram chat (via an HTTP(S) request to Telegram’s
servers). For example, the system uses this to push a warning message when the bin exceeds a fill
threshold. * (Other core Arduino libraries like \<ArduinoJson.h> may be used for formatting data
payloads, and \<ESP32HTTPClient.h> is typically included via HTTPClient on ESP32.)

After programming, the ESP32-S3 board was powered and connected to Wi-Fi. A simple Node-RED
flow was set up on a computer/server to receive HTTP POST data from the ESP32 (containing distance
or fill level info) and display or log it. A Telegram bot was created and its credentials (bot token and
chat ID) were configured in the firmware to allow the device to send Telegram messages.

Results

Once deployed, the smart bin monitoring system performed continuous measurement and
successfully provided both local and remote feedback on the bin’s status. *Distance and Fill Readout:*
The OLED display updates in real-time with the current distance from the sensor to the trash. For
instance, if the trash is 45 cm below the lid, the display might show “Distance: 45.0 cm” on one line.
The next line shows the calculated fill percentage, e.g. “Fill: 25%”. The fill percentage is computed
based on the bin’s 60 cm height (e.g. fill% = (60 cm − measured_distance) / 60 cm × 100%). As trash
accumulates and the measured distance decreases, the displayed percentage increases. This
provides an immediate intuitive indication of how full the bin is.

Visual and Remote Alerts: A key feature is the automatic alert when the bin is nearly full. The
system defines “nearly full” as ≥80% capacity (i.e. the trash is within roughly 12 cm of the lid). When
this threshold is reached or exceeded, the ESP32’s onboard LED turns on as a *visual alert. In testing,
when the bin was filled above the 80% mark, the LED illuminated clearly (in the case of an RGB LED, it
can be set to a bright color like red). Simultaneously, the system sends a **warning message* over
Wi-Fi. The Node-RED endpoint receives a JSON payload (for example:
{“bin”:“Kitchen”,“fill”:85,“status”:“Nearly Full”}), which can be displayed on a dashboard gauge and
logged with a timestamp. The Telegram bot sends a notification to the configured channel or user, for
example: “⚠ Alert: The kitchen trash bin is 85% full. Please empty it soon.” These alerts were verified
during demonstrations – the Telegram message arrived within seconds of the bin crossing the
threshold, and Node-RED successfully updated its interface. Regular status updates (e.g. periodic
messages or Node-RED updates even when the fill level is below the threshold) were also enabled,
allowing remote monitoring of the bin level over time. If the sensor ever encounters a read error (for
instance, no object detected or an I²C read failure), the system handles it by displaying an error
message on the OLED (e.g. “Sensor error”) and skipping that reading; an error flag can also be sent to
Node-RED/Telegram so the user knows the data might be momentarily unavailable.

Overall, the system proved capable of accurately monitoring the bin’s fill level. In a simple test,
placing objects inside to different heights yielded the expected distance readings and corresponding
fill percentages. The 80% full LED trigger worked as intended, and remote notifications were
successfully delivered, demonstrating the viability of the design.

Code Summary

The firmware follows a typical Arduino structure with setup and loop functions, utilizing the
aforementioned libraries to implement the logic. The pseudocode of the system is outlined below:

1. *Initialization (setup):* The ESP32 initializes serial communication for debugging and configures the

2026/01/29 01:07 3/4 Smart Trash Bin Monitoring System

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

I²C bus. The ToF sensor is started (e.g., using lox.begin() and possibly set to continuous ranging
mode). The SH1106 display is initialized via U8g2 and a splash or initial message may be shown. Wi-Fi
connectivity is then established using the stored SSID/password, and upon success an HTTP client and
Telegram bot client are prepared. If any initialization fails (sensor not found, Wi-Fi not connected), the
system prints error messages and may indicate this on the OLED (e.g. “WiFi Error” or “Sensor Fail”).
2. *Main Loop (continuous operation):* The microcontroller continuously measures the distance to the
trash. In each cycle, a distance reading is obtained from the VL53L0X sensor (e.g., distance =
sensor.readRange()). The code checks for invalid readings (the sensor returns 0 or a timeout if it fails
to measure). If a reading is valid, the fill percentage is calculated using the bin’s known height. 3.
Display Update: The OLED is refreshed with the new values each cycle. The code clears the display
buffer and prints the distance (in centimeters, possibly averaged or filtered for stability) and the fill
percentage. This update occurs at a reasonable interval (for example, a few times per second or
every few seconds) to keep the display current without flickering. 4. *LED Alert Logic:* The program
compares the fill percentage against the predefined threshold (80%). If fill_percent >= 80% and the
LED is not already on, the onboard LED is activated (e.g., set to HIGH or in case of an RGB LED, set to
a solid color). If the fill drops below the threshold (e.g., after emptying the bin) the LED is turned off.
This hysteresis prevents flicker around the threshold boundary. 5. *Networking – Node-RED Update:*
The loop periodically (e.g. every fixed interval like 30 seconds, or each significant change) sends an
HTTP POST request to the Node-RED server with the latest data. This is done using the HTTPClient
library: the bin’s status (distance, fill%, maybe a timestamp) is formatted (often as a JSON string) and
posted to a known URL endpoint where Node-RED is listening. The code checks the HTTP response to
ensure the data was received. 6. *Networking – Telegram Notifications:* Using the
UniversalTelegramBot library, the code sends a Telegram message when certain events occur.
Specifically, when the fill crosses the 80% threshold (or reaches 100%), a one-time alert message is
sent to notify that the bin is nearly full and should be emptied. Additionally, the system can be
configured to send periodic Telegram updates (for example, a daily summary or when the bin gets
emptied). The bot communication involves sending an HTTPS request via WiFi to Telegram’s API with
the bot token and chat ID. 7. *Error Handling and Loop Delay:* If the distance sensor returns an error
(e.g., no valid reading), the code can retry a few times or output an error state for that cycle, ensuring
the rest of the loop continues. A short delay or timer is used at the end of each loop iteration to
regulate the measurement frequency and avoid flooding the network with too many requests. In
practice, readings and updates might be done, for example, once every few seconds for local display
and perhaps every minute for remote updates, which is sufficient for a trash bin scenario.

This logical structure ensures that the device remains responsive and up-to-date, providing both local
feedback via display/LED and remote feedback via network. The code is modular, with separate
functions handling sensor reading, display output, and network communication, making it easier to
maintain or expand.

Discussion

This smart bin monitoring system demonstrates a practical Internet-of-Things solution for waste
management, but there are some limitations and opportunities for improvement. One limitation is
that the ToF sensor measures distance at a single point directly below it. If trash is unevenly
distributed (e.g. piled higher on one side away from the sensor), the measured distance might not
reflect the true highest fill level. In such cases, the bin could be slightly fuller than reported. A
possible improvement would be to use multiple sensors or a scanning mechanism (like a servo-
mounted sensor) to sample distances at various points, giving a more holistic measurement of fill
level. Another limitation is the reliance on Wi-Fi connectivity: if the network is down or the device
loses connection, remote updates and alerts will fail. Implementing reconnection logic or an offline
indicator (and perhaps storing data to send later) could mitigate this. Additionally, the system

Last update: 2025/07/29
01:05 amc:ss2025:group-t:start https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-t:start&rev=1753743955

https://student-wiki.eolab.de/ Printed on 2026/01/29 01:07

currently runs on continuous power; if battery operation is desired, power-saving techniques (like
deep sleep between measurements) could be implemented to prolong battery life.

There is also room for feature enhancements. For example, adding a weight sensor at the bottom of
the bin could provide another metric for fill level (by weight) to complement the distance
measurement. The OLED display, while useful, could be supplemented with an audible buzzer for a
local alarm when the bin is full, which would be hard to miss. On the software side, the Node-RED
integration could be expanded — for instance, to send email notifications or log historical fill data for
analysis. The Telegram bot could be made interactive, allowing a user to query the current bin status
on-demand.

Despite these limitations, the impact of the project is significant for its scale. In a broader context,
such a system can reduce the need for manual checks of trash bins and enable more efficient waste
collection scheduling. Facilities management in smart buildings or campuses could deploy these
sensors on multiple bins and monitor them centrally, ensuring bins are emptied right when needed
and never overflow. This not only improves cleanliness and hygiene but can also optimize labor and
collection routes, contributing to smarter urban infrastructure. In conclusion, the project achieved its
primary goal of creating a functional bin fill-level monitoring device, and it illustrates how low-cost
sensors and Wi-Fi connectivity can be leveraged to solve everyday problems in an intelligent way.

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-t:start&rev=1753743955

Last update: 2025/07/29 01:05

https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc:ss2025:group-t:start&rev=1753743955

