2026/01/13 22:55 1/6 ESP32 Deep Sleep Mode

↩ Back to the main page

ESP32 Deep Sleep Mode

1. About ESP32 Deep Sleep

In this project the ESP32 is idle for more than 95% of the time because it is supposed to take
measurements only once an hour, transmit the data and wait again. However, the ESP32 has the
possibility to be run in different power modes. Besides the active mode where all peripherals are
powered, there are also the modem-sleep mode, light-sleep mode, deep-sleep mode, hibernation
mode and power-off mode.

As explained in the DS3231 page, the ESP32 can be put to sleep to save a lot of energy from the
battery and only wake up once an hour by an interrupt signal from the DS3231 RTC module. For the
ESP32 to wake up from an external interrupt, the real time clock (RTC) peripherals (RTC timer + RTC
memory) must remain powered on. The power mode with the lowest energy consumption and RTC
peripherals still powered on is the deep sleep mode with only RTC timer and RTC memory powered. In
this mode, the module draws only 10 μA of current, which is a several thousand times less than
in the active mode (see the ESP32 datasheet pp 23 -24). However, like this it is only possible to use
the RTC_GPIO pins (figure 1), not the other GPIOs to read the interrupt signal.

ESP-WROOM-32 DEV KIT

MADE DY GUSTAWD MURTA BASED ON JAN 218

MDDULE W, AR ERE R conS Test fportfol 1o- ITems,/new-espi2 -wraond 2 -modu le)
+3,3V REG o g GHD
ENABLE in] o\ s D e
(RO 208 OB Sons VP Gnza36 T\ e VI THNR oD o2 o= (0BT s
e el P] o e i < | o b) o\ ATl = | DD]
rrcaod HBERS voerd | rrod S fTE e ' - N E . "\ AT o3 XD oy v
oo R voer2) cesods 51N\ o ETIEE L ¥)} N\ ALF 02T =
b o B\ R ;1 o
Sorai 33 B oS WS e (0 e [Y T : AW 55 (o L T
s _ g ANYNINAARE
BREE o6 B 25 0\ o R o\ EewnlE e
BRET2 frcio? RS i cemod6 - o ™ 0"\ T P10] o CoOstita

[k il ? AR e Genl LT e [A '3| |I“_
e i S i i B = o\ [=t
Hapoums yerg | erD | Toun arcand s MOERis b 7o el SLT Y e 3 B
&
pmana3ncth | MoK (AR ot AR vt ol 3 -\ o 6
s fesnaras g FAD vt || on BTN\ o BB B

&\ ~FF o017 oot L THD fezgnina

o\ EL el 6 i Lo RXD frsaniag

N e e e]
o\ ~FE] i@ O e zod 1 olach) oo

&\] srr02 e BB el 2 e

O\ i s R ol RS D8 i 10 |

a15 17 ¢

VY e e v w

e

DB e pioatad g TN o @Jﬂ!ﬂ% _3 E & E o e !:"ll l: E ‘. w'yﬂi Ll wfﬁ'mmu' s |
2000 | e LTS fnrcss) piod L ET | o " F) il @x E ' o\ T o7 || ort [aRTS i soineas
ss.ov ove RGN = " &N\ £ (o | ek (€T ar | e |

Figure 1 ESP32 DevKit Pinout (Source: ESP32 DevKit 38 Pins)

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://wiki.eolab.de/doku.php?id=amc2020:group_n:start
https://student-wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc
https://student-wiki.eolab.de/lib/exe/fetch.php?tok=c7b926&media=https%3A%2F%2Fwww.espressif.com%2Fsites%2Fdefault%2Ffiles%2Fdocumentation%2Fesp32_datasheet_en.pdf
https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:esp_32_devkitc-vb_pinout_wroom_.jpg
https://live.staticflickr.com/4764/40089095211_ec1fee0087_b.jpg

Last update: 2023/01/05 14:38 amc2020:group_n:deepsleep https://student-wiki.eolab.de/doku.php?id=amc2020:group_n:deepsleep

2. Setup of the DS3231 with the ESP32

As the DS3231 is an open drain device, the SQW pin connected to one of the RTC_GPIO pins needs to
be pulled to high voltage using a pullup resistor. In the case of the Arduino UNO sketch, the Arduino's
internal pullup resistor was used. The ESP32 also has internal pullup resistors, but their value strongly
fluctuates from module to module and pin to pin and generally lies between 30 - 80 kQ. Furthermore,
it is somewhat complicated to control the pins during deep sleep mode to activate the pullups.
Therefore, a 100kQ external pullup resistor was used to connect the interrupt pin to 3.3V which also
results in a lower current being drawn when the interrupt is triggered.

The DS3231 was connected the following way:

e VCCto 3.3V

e GND to GND

e SDA to GPIO 21

e SCL to GPIO 22

e SQW to GPIO 13 (RTC_GPIO14) (and 3.3V through the pullup resistor).

The connections can also be seen in the diagram in figure 2.

R1
100k

Figure 2 Setup of DS3231 and ESP32.

3. Programming

After setting up the module with the ESP32, the programming for the deep sleep is very simple. For

https://student-wiki.eolab.de/ Printed on 2026/01/13 22:55

https://student-wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:esp32_ds3231.png

2026/01/13 22:55 3/6

ESP32 Deep Sleep Mode

the following test, the DS3231 was programmed to trigger an interrupt once a minute, i.e. the setting
was changed to ALARM_SECONDS_MATCH. How to do that is explained in the DS3231 page.

3.1 Code

ESP32_DS3231 Deep Sleep_test.ino

//ESP32 DS3231 Deep Sleep Test

#include <Wire.h>
#define DS3231RTC I2C ADDRESS 0x68
#define I2C SDA 21
#define I2C SCL 22

void clearAlarml
Wire.beginTransmission(DS3231RTC I2C ADDRESS
Wire.write(OxOF
Wire.write(BOOOOOOOO
Wire.endTransmission

void setup

Wire.begin(I2C SDA, I2C SCL

clearAlarml

Serial.begin (115200

delay (1000

Serial.println("ESP32 woke up from deep sleep."

int i=3;i>=0;1i

Serial.print("Going back to sleep in "
Serial.println(i
delay (1000

esp sleep enable ext® wakeup(GPIO NUM 13,0

esp _deep sleep start
Serial.println("This will never be printed."

void loop
//This is not going to be called.

3.2 The Code Explained

//1

//2

//3
//4
//5

//6
//7
//8

1. After including the Wire.h library for 12C communication and defining the DS3231 12C address
as 0x68, the 12C pins of the ESP32 need to be defined. By default SCL is GPIO 22 and SDA is
GPIO 21, but it is possible to use almost all pins for I2C communication if done correctly. Here

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc
https://student-wiki.eolab.de/doku.php?do=export_code&id=amc2020:group_n:deepsleep&codeblock=0

Last update: 2023/01/05 14:38 amc2020:group_n:deepsleep https://student-wiki.eolab.de/doku.php?id=amc2020:group_n:deepsleep

just the default pins are used.
2. The function clearAlarml() is the only one, that must be copied into the new sketch.

3. When using the Wire.begin() method to start the I12C bus, the I2C pins previously defined
need to be given as argument.

4. After waking up, the alarm flag 1 of the DS3231's status register needs to be reset, otherwise
the interrupt is fired continuously and the ESP32 would immediately wake up again after going
into sleep mode. Therefore, clearAlarml () is used to reset the alarm in the beginning.

5. The serial connection is started to test whether the sketch is working. After waking up, the
ESP32 prints some data to the monitor. Then a counter is counting down from 3 to 0 and the
ESP32 goes back into deep sleep.

6. The function esp_sleep_enable_ext0_wakeup () defines the method for waking the ESP32
up from deep sleep. The ext® means that the the wake up source is external and can only be
triggered by a single pin. The number of the pin is given in the argument as GPI0_NUM_X
where X represents the GPIO number of that pin. The second argument (level) defines which
state the pin needs to be in to wake the ESP32 up. A 1 means that it will wake up, when the
voltage is 3.3V. A @ means it wakes up when it is OV. As the DS3231 pulls the pin to GND when
the alarm is activated, the level needs to be 0.

7. The function esp_deep_sleep_start() changes the power mode of the ESP32 to deep sleep.

8. When the deep sleep is activated, the rest of the program code is just not executed. After
resetting, the ESP32 starts again with the setup (). Therefore, this line should never be printed
to the serial monitor; otherwise there is an error. The program also never reaches the main
Loop().

3.3 Results

Apart from the timestamps on the left, the result in the serial monitor should look like this. In the data
that the ESP32 prints by itself, it can be seen that the reset occured due to waking up from deep
sleep (1). Furthermore, the last serial print command was not executed because deep sleep was
activated before that could happen.

When comparing the time stamps (1, 3 and 4) it becomes visible that the wake up from deep sleep
occurred always 1 minute after the last wake up. However, the milliseconds are always varying a little
bit. This might be due to the temperature compensation of the DS3231 through which the
capacitance and therefore the frequency of the oscillator are changed. So, there might be very small
inaccuracies, but they are constantly compensated for by the module, such that the total drift stays
very low.

18:50:42.643 -> ets Jun 8 2016 00:22:57

18:50:42.643 ->

18:50:42.643 -> rst:0x5 (DEEPSLEEP RESET),boot:0x13 (SPI FAST FLASH BOOT)
//1

18:50:42.643 -> configsip: 0, SPIWP:Oxee

18:50:42.643 ->

clk drv:0x00,q drv:0x00,d drv:0x00,cs0 drv:0x00,hd drv:0x00,wp drv:0x00
18:50:42.643 -> mode:DIO, clock div:1l

18:50:42.643 -> load:0x3fff0018,1len:4

18:50:42.643 -> load:0x3fff001lc,len:1216

18:50:42.643 -> ho 0 tail 12 room 4

18:50:42.643 -> load:0x40078000,1len:10864

https://student-wiki.eolab.de/ Printed on 2026/01/13 22:55

2026/01/13 22:55

5/6 ESP32 Deep Sleep Mode

18:
18:
18:
18:
18:
18:
18:

50
50
50
50
50
50
50

142
142
143
143

:45

.643
.643
.793
.793
144,
.743
:46.

783

743

//2

18:51
//3

18:51
18:51
18:51:42.633
18:51:42.633
clk drv:0x00
18:51:42.633
18:51:42.633
18:51:42.633
18:51:42.633
18:51:42.633
18:51:42.633
18:51:42.633
18:51:43.782
18:51:43.782
18:51:44.763
18:51:45.753
18:51:46.763
18:52:42.653
//4

18:52
18:52
18:52:42.653
18:52:42.653
clk drv:0x00
18:52:42.653
18:52:42.653
18:52:42.653
18:52:42.653
18:52:42.653
18:52:42.653
18:52:42.653

:42.633

142
142

.633
.633

142
142

.653
.653

18:
18:
18:
18:
18:

52
52
52
52
52

143
143

:45

.753
.753
144,
.793
:46.

753

783

load:0x40080400, len:6432
entry 0x400806b8

ESP32 woke up
Going back to
Going back to
Going back to
Going back to

from deep sleep.
sleep
sleep
sleep
sleep

)
>
SO~ N W

ets Jun

8 2016 00:22:57

rst:0x5 (DEEPSLEEP RESET),boot:0x13 (SPI FAST FLASH BOOT)
configsip: 0, SPIWP:Oxee

,q_drv:0x00,d drv:0x00,cs0 drv:0x00,hd drv:0x00,wp drv:0x00

mode:
load:
load:
ho 0
load:
load:

DIO,
Ox3fffO018, Len
Ox3fff001lc, len
tail 12 room 4
0x40078000, Len
0x40080400, len

entry 0x400806b8
ESP32 woke up from deep sleep.
Going back to sleep in 3
Going back to sleep in 2
Going back to sleep in 1
Going back to sleep in 0

ets Jun

clock div:

1
14

11216

: 10864
16432

8 2016 00:22:57

rst:0x5 (DEEPSLEEP RESET),boot:0x13 (SPI_FAST FLASH BOOT)
configsip: 0, SPIWP:Oxee

,q _drv:0x00,d drv:0x00,cs0 drv:0x00,hd drv:0x00,wp drv:0x00

mode:
load:
load:
ho 0O
load:
load:

DIO,

Ox3fff001c, Llen
tail 12 room 4
0x40078000, len
0x40080400, len

entry 0x400806b8

clock div:
Ox3fff0018, len:

1
4

11216

: 10864
16432

ESP32 woke up
Going back to
Going back to
Going back to
Going back to

Back to the top ⤴

from deep sleep.
sleep
sleep
sleep
sleep

)
>
oSO~ N W

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

javascript:self.scrollTo(0,0)

Last update: 2023/01/05 14:38 amc2020:group_n:deepsleep https://student-wiki.eolab.de/doku.php?id=amc2020:group_n:deepsleep

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link: i I
https://student-wiki.eolab.de/doku.php?id=amc2020:group_n:deepsleep ‘ﬂﬁp# .*

Last update: 2023/01/05 14:38 E:

https://student-wiki.eolab.de/ Printed on 2026/01/13 22:55

https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc2020:group_n:deepsleep

	ESP32 Deep Sleep Mode
	1. About ESP32 Deep Sleep
	2. Setup of the DS3231 with the ESP32
	3. Programming
	3.1 Code
	3.2 The Code Explained
	3.3 Results

