

For noise disturbance detection in the environment

This code monitors the sound intensity using an LM393 sensor connected to an Arduino UNO board. The used sensor has only a digital output. Therefore, the number of times the sensor detects a sound is summed up over a sampling time called "SAMPLE_TIME". Then the sum called "sampleBufferValue" is printed on a Serial Monitor and visualized with the Serial Plotter. Additionally, the code allows communication with a LED to provide a visual alarm if the "sampleBufferValue" surpasses a preset Threshold. Regarding the digital outputs, 0 means silence and 1 means noise.

Detailed explanation is given in the [video tutorial](#)

[Sound_Detection.ino](#)

```
const int OUT_PIN = 12;      // The OUTPUT of the sound sensor is
connected to the digital pin D12 of the Arduino
const int SAMPLE_TIME = 10; // The sampling time in milliseconds, can
be set differently if required
const int Threshold = 90; // Threshold on decibel value for LED
switching ON, the value has been optimized with respect to
//the used sampling time (900 cumulative digital counts ≈ 90 dB from
"Schall")

unsigned long millisCurrent;      // current time
unsigned long millisLast = 0;    // previous time
unsigned long millisElapsed = 0; // difference between current time
and previous time (time interval)

int sampleBufferValue = 0;        // initiate the sum of digital
outputs over the sampling time
int led = 8;                    // LED on pin 4 of Arduino
int dB = 0;                     // initiate sound intensity dB value

void setup() {

    Serial.begin(9600);          // Arduino starts serial communication
with baud rate 9600
    pinMode(led, OUTPUT);        // the LED is connected as output for
alarm purpose

}

void loop() {

    millisCurrent = millis();      // the current time is
assigned to the dedicated variable
    millisElapsed = millisCurrent - millisLast; // the elapsed time is
updated

    if(digitalRead(OUT_PIN) == HIGH){      // HIGH means noise
```

```
    sampleBufferValue++;                                //increments the sum
    variable by 1
}
if (millisElapsed > SAMPLE_TIME) {                //if the elapsed time
surpasses the sampling time,
//print the sampleBufferValue and test threshold for alarm

dB = 0.0666 *(sampleBufferValue) + 30.223; //linear regression to
calculate the decibel value based of
//the rough calibration of the sensor response
Serial.println(dB);                                // print decibel values on
the Serial Monitor
Serial.print("dB");                                // print sound unit
decibel

if (sampleBufferValue > Threshold) {                // test if the threshold is
surpassed

digitalWrite(led, HIGH);                            //blink LED 2 ms ON and 1
ms OFF
delay(2);
digitalWrite(led, LOW);
delay(1);
}

digitalWrite(led, LOW);                            // the LED is turned off to
be ready for the next sample
sampleBufferValue = 0;                            // re-initialization of the
sampleBufferValue variable for the new sampling time
millisLast = millisCurrent;                      // update the previous time
to be the start for the next sample
}
}
```

[Back to report](#)

From:
<https://student-wiki.eolab.de/> - **HSRW EOLab Students Wiki**

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc2021:group1:code:sound_detection

Last update: **2023/01/05 14:38**

