

For noise disturbance detection in the environment

This code monitors the sound intensity using an LM393 sensor connected to an Arduino UNO board. The used sensor has only a digital output. Therefore, the number of times the sensor detects a sound is summed up over a sampling time called "SAMPLE_TIME". Then the sum called "sampleBufferValue" is printed on a Serial Monitor and visualized with the Serial Plotter. Additionally, the code allows communication with a LED to provide a visual alarm if the "sampleBufferValue" surpasses a preset Threshold. Regarding the digital outputs, 0 means silence and 1 means noise.

Detailed explanation is given in the [video tutorial](#)

[Sound_Detection.ino](#)

```

const int OUT_PIN = 12;           // The OUTPUT of the sound sensor is
connected to the digital pin D12 of the Arduino
const int SAMPLE_TIME = 10;       // The sampling time in milliseconds,
can be set differently if required
const int Threshold = 90;         // Threshold on decibel value for LED
switching ON, the value has been optimized with respect to the used
sampling time (900 cumulative digital counts ≈ 90 dB from "Schall")

unsigned long millisCurrent;      // current time
unsigned long millisLast = 0;     // previous time
unsigned long millisElapsed = 0;   // difference between current time
and previous time (time interval)

int sampleBufferValue = 0;         // initiate the sum of digital
outputs over the sampling time
int led = 8;                      // LED on pin 4 of Arduino
int dB = 0;                       //initiate sound intensity dB value

void setup() {

    Serial.begin(9600);           //Arduino starts serial communication
with baud rate 9600
    pinMode(led,OUTPUT);         // the LED is connected as output for
alarm purpose

}

void loop() {

    millisCurrent = millis();      //the current time is
assigned to the dedicated variable
    millisElapsed = millisCurrent - millisLast; //the elapsed time is
updated

    if(digitalRead(OUT_PIN) == HIGH){           //HIGH means noise
        sampleBufferValue++;
        //increments the sum
    }
}

```

```
variable by 1
}

if (millisElapsed > SAMPLE_TIME) { //if the elapsed time
surpasses the sampling time, print the sampleBufferValue and test
threshold for alarm

dB = 0.0666 * (sampleBufferValue) + 30.223; //linear regression to
calculate the decibel value based of the rough calibration of the
sensor response
Serial.println(dB); // print decibel values on
the Serial Monitor
Serial.print("dB"); // print sound unit
decibel

if (sampleBufferValue > Threshold) { // test if the threshold is
surpassed

digitalWrite(led, HIGH); //blink LED 2 ms ON and 1
ms OFF
delay(2);
digitalWrite(led, LOW);
delay(1);
}

digitalWrite(led, LOW); // the LED is turned off to
be ready for the next sample
sampleBufferValue = 0; // re-initialization of the
sampleBufferValue variable for the new sampling time
millisLast = millisCurrent; // update the previous time
to be the start for the next sample
}
}
```

[Back to report](#)

From: <https://student-wiki.eolab.de/> - **HSRW EOLab Students Wiki**

Permanent link: https://student-wiki.eolab.de/doku.php?id=amc2021:group1:code:sound_detection&rev=1630804641

Last update: **2023/01/05 14:38**

