
2025/07/06 18:08 1/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

A. Batson (28067), A. Akuri (29630)

Building Appliance Optimization

Time & Energy Saving through better heating and lighting management.

1.0 Introduction

Batson

As the urgency to mitigate and combat climate change grows, more and more solutions are required
to foster a more sustainable world. On the radar for these solutions energy conservation and
consumption reduction techniques comprise a significant measure in realizing greater sustainability in
home & industry (Mahiri et al. 2022). However, one of the greatest limitations in realizing these
developments is the human contingent, for example forgetting to turn/off lights and heating. This
project targets energy-use optimization by smart control of lights and heating use in a prototype
designed to simplify lighting and heating appliances in a building. The applicability of this project is
not only limited to building energy use optimization but also vertical farming installations, in which
light and temperature control are imperative to control parameters for crop yield. In the end effect,
we aim to construct a prototype with a functioning loop, where light, heating, and cooling measures
are triggered by appropriate thresholds that 'justify' the use phase. Data visualization and monitoring
are also important to us.

The 'brains' of this project will be the ESP32 microcontroller. Its WiFi capabilities are of top interest for
our project design, coupled with its I2C capabilities and hardware compatibility, it would be a great
project fit.

A Light Dependent Resistor (LDR) photoresistor takes light value data. Light Emitting Diodes (LEDs)
will be operated depending on ambient light inputs to automate electricity utilization. A DHT11 sensor
works similarly, in taking room temperature data, which determines the switching on/off of a
ventilator, used to represent an AC unit.

Our aim is to develop a smart system to fit exactly this niche described above, we expect challenges
and hope to account for possible limitations and improvements along the way.

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

Figure 1 A simplified Overview of the Project (Akuri).

This diagram shows the connection between the microcontroller(esp32), sensors (SHT31 and LDR),
and the pathways to their target devices. For conceptualization purposes only.

2.0 Materials & Software

Batson

 * Arduino UNO.
 * ESP32 : WROOM-32 & ESPRESSIF WROVER-B.
 * LDR Photoresistor & 10k Ohm resistor.
 * DHT11 Temperature Sensor & SHT Temperature Sensor.
 * Groove Relay & SPDT Relay.
 * LEDs and 220 Ohm resistors.

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:fnished_graphic_schematic_with_colour.png

2025/07/06 18:08 3/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 * Connecting cables.

 * MQTT.
 * Node-Red.
 * InfluxDB.
 * Grafana.

2.1 ESP32 & Wi-Fi Connection

Batson

|Purpose| The ESP32 is a microcontroller
designed for low power IoT applications. It's
built-in Wi-Fi capabilities are important for the
data transmitting sections of the project. Outside
of that it boastm Bluetooth and Deep Sleep
Operating abilities.

|Functioning|

The ESP32 packs an outstanding 2.4GHz Wi-Fi
and Bluetooth combined system chip which is
also designed with ultra low power consumption
technology. It has quite a few other interesting
benefits for optimum functionability and RF
performance. It is robust, versatile and reliable
within a wide array of scenarios and uses. Some
of the interesting things you can use ESP32 for
are building web servers, it comes with classic
and also low energy Bluetooth, the LoRa
technology, it can work with MQTT and even
remote control a car robot among many other
things (Espressif Systems, ESP32 Series
Datasheet).

Specifications:

Figure 2 Schematic of the ESP32 DevKit V1
Micro-controller.
For more information on the esp32 visit Here.

2.2 Arduino UNO

Akuri

|Purpose| Arduino is an open-source electronics
platform based on easy-to-use software and
hardware. Arduino boards are able to read

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:esp32_pin_config_2_.png
https://randomnerdtutorials.com/esp32-external-wake-up-deep-sleep/
https://randomnerdtutorials.com/esp32-external-wake-up-deep-sleep/
https://components101.com/microcontrollers/esp32-devkitc#:~:text=of%20the%20ESP32.-,Input%2Foutput,pins%20supports%20capacitive%20touch%20features./

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

inputs, i.e. light on a sensor, a finger on a
button, or a simple message - and turn it into an
output: activating a motor, turning on an LED or
publishing something online.

|Functioning| The Arduino Uno is a
microcontroller board based on the ATmega328
(datasheet).[14] It contains 6 analog inputs, a 16
MHz ceramic resonator, 14 digital input/output
pins (six of which can be used as PWM outputs),
a USB port, an ICSP header, a power jack and a
reset button. It comes with everything needed to
support the microcontroller; to get started you
simply need to connect it to a computer with a
USB cable or power it with an AC-to-DC adapter
or battery. |Applicability| Even if the Arduino
Uno board is accessible to start with and easy to
use, the limitation it faces is the 32KB memory
which is not a lot of space, therefore it has no
memory safety checks [16] but it depends on
your application. Nevertheless, we consider it
suitable for our project, together with the
Arduino board, since it can bear to 20mA. (I/O
pins are limited to 40mA before they are
damaged, that’s why 20mA is the suggested
limit to prevent any damage.)

Figure 3 Arduino Uno Pin Diagram.

Some Specifications:

The Operating Voltage of the Arduino is 5V1.
The recommended input voltage ranges2.
from 7V to 12V
The I/P voltage (limit) is 6V to 20V3.
Flash Memory - 32 KB, and 0.5 KB memory4.
is used by the boot loader

2.3 LDR Photoresistor

Batson

|Purpose| A Photoresistor Light dependent
resistor (LDR) is an electronic device which is
used in an electronic circuit to detect and
measure the presence and level of light
intensity. These LDRs are specifically designed
for the purpose of light sensitivity detection and
the change in the resistance this creates, which
differentiates them from other resistors like the
carbon film resistor or the metal oxide film
resistor, hence increasing their importance in an
electrical circuit.

|Applicability| The LDR comes with a lot of
advantages; it is cheap, readily available, easy
to use and also easy to manufacture. They are
made from semiconductor materials allowing

|Functioning| The way the LDR works is simple.
When light makes contact with the upper surface
it causes a change in resistance. This resistance
can be measured in Ohms. In the serial monitor
however, a digital to analog range would be
produced (depending on the resolution of the
board). On pin 34 of the esp32 board we expect
a 0-4096 (12 bit resolution) range of values and
with Arduino uno 0-1024 (10 bit resolution).

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:arduino-uno-pin-diagram.jpg
https://www.elprocus.com/what-is-arduino-uno-r3-pin-diagram-specification-and-applications//

2025/07/06 18:08 5/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

them to have light sensitive properties. The
simple structure and labeled parts of an LDR can
be seen in figure 3.

Figure 4 LDR Photoresistor.

2.4 DHT11 Temperature Sensor

Batson

|Purpose|

The DHT11 it is a simple effective but
inexpensive temperature and humidity sensor. It
is made up of features that measure analog
signals and converts them into temperature and
humidity values. This means they are quite
intuitive and easy to connect to a
microcontroller.

|Applicability| The DHT is a lower power
consumption device and has reliable long term
stability. It's ease of accessibility and familiarity
were also factors placing into our sensor
selection at the project's beginning(D. Srivastava
et. al. 2018)

|Functioning| As shown in the image above the
data pin is connected to an I/O pin of the MCU
and a 5K pull-up resistor is used. This data pin is
sending the value of both temperature and
humidity as serial data. There are ready-made
libraries for interfacing DHT11 with Arduino.

Figure 5 DHT11 .

Specifications

Temperature range: 0 to 50ºC +/- 2ºC
Relative humidity range: 20 to 90% +/-5%
Temperature resolution: 1ºC
Humidity resolution: 1%
Operating voltage: 3 to 5.5 V DC
Current supply: 0.5 to 2.5 mA
Sampling period: 1 second

2.7 - SHT

Akuri

|Purpose| The SHT31 looks modest but is a very

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:ldr_photoresistor.png
https://engineeringlearn.com/what-is-ldr-photoresistor-types-working-application-diagram-symbol-complete-details/
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:dht_11.png
https://osoyoo.com/2015/03/21/dht11-temperature-and-humidity-sensor/

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

powerful and accurate sensor when it comes to
detecting temperature and humidity
(Seeedstudio, 2021). It has an accuracy of
±2%RH (for relative humidity) and ±0.3°C (for
temperature).

|Applicability| It is an analog sensor, it is
compatible with both 3v and 5v which makes it
really useful because it doesn't require a voltage
shifter. This makes it one of the major parts of
this project adding to the fact that it's easy to
integrate.

|Functioning| This module communicates using
with I2C serial bus and can work up to 1 MHz
speed. This means it offers high reliability and
long-term stability with low power consumption,
fast response, and strong anti-interference
ability.

Figure 6 Electromechanical Relay.

2.8 Software Packages

Batson

The first software required is the Arduino IDE, which was necessary for the writing, testing, and
implementation of the code. This software also provided the serial monitor which was used as a first-
hand view for the testing of the sensors. It was also used as a demonstration screen. The
programming tool Node-Red uses a browser-based flow editor to wire together hardware devices,
APIs, and online services. InfluxDB is a time series database built specifically for storing time series
data. It was used along with Grafana. Grafana is a time series data visualization tool. It provides
charts, graphs, and alerts for the web when connected to supported data sources.

3.0 Execution of Project

Batson

At the beginning of the project, many of the sensors and tools were clearly used, and parts were
missing from the kit. In order to confirm the functionality of the sensors and the microcontrollers, as
well as wires and resistors, we set out to test individual components with the Arduino UNO board and
esp32 board. The idea behind was to be able to streamline the debugging by narrowing the
troubleshooting efforts required later when using the esp32. This was simultaneously useful in getting
to know the components and connection methods more intricately.

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:grove-temperature-and-humidity-sensor-sht31-i2c_d.jpg
https://12geeks.com/shop/circuit-components/relay/grove-relay.html

2025/07/06 18:08 7/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

We start with a testing phase of the materials, debugging and selecting fitting components followed
by the execution of the project goal; a prototype for building optimization of heat and lighting use.

Later on in the project development, the group became split geographically, coordinating efforts
between Barbados and Germany. As a result, some variance of components are used (eg. an SHT
module in place of the DHT sensor, relay modules), as a means of meeting the project execution. In
end effect the project design was improved. The duplicity of components allowed us to work remotely
and cooperatively, through core stages of the project.

4.0 Testing Phase

Batson

Testing was conducted with Arduino UNO at first as it was a more familiar controller, with familiar
ports and specifications. Later on, testing was conducted on the DHT11 using the ESP32.

4.1 LDR Photoresistor x Arduino UNO

Batson
For the Setup, a 10k Ohm resistor was paired to the resistor on a breadboard fed by arduino UNO. It
was found that the components were working responsively. To demonstrate the on and off cycle of a
lightulb or lighting system 2 LEDS were used with 220 Ohm resitors each.

4.1.1 Schematic Batson

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:scheme_ldr_led.png

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

Figure 7 LDR Setup with LEDs on Arduino UNO

4.1.2 Code

Batson

Photoresistor Testing With Arduino Uno

/* Here the LDR photoresistor is tested with Arduino.
 2 LEDs are paired to the different light values to simulate an
indoor response to sunny,
 overcast, and dark natural lighting conditions
 The application of further development of this test could be useful
in vertical farming systems
 and smart lighting services for industrial buildings/homes with many
windows and architectural utilization/
 reliance on natural light.
*/
int light = 0; // store current light value

void setup() {
 Serial.begin(9600);
 pinMode(13, OUTPUT); // setting LEDs to visualize changes in lighting
in the given pin IDs.
 pinMode(12, OUTPUT);

}

void loop() {

 light = analogRead(A0); // read the light value from the LDR
photoresistor.
 Serial.println(light);

 if (light > 450) { // when its bright (i.e greater than 450Ohms),
both LEDs will be off to save eergy)
 Serial.println("It very bright, lots of natural light");
 digitalWrite(13, LOW);
 digitalWrite(12, LOW);
 }

 else if (light > 229 && light < 451) { //medium amount of light to
show one LED at a time).
 Serial.println("moderate light quantity, quite cloudy");
 digitalWrite(13, HIGH);
 digitalWrite(12,LOW);
 }
 else { // both LEDs turn on when the surroundings are dark.

https://student-wiki.eolab.de/doku.php?do=export_code&id=amc2022:groupd:start&codeblock=1

2025/07/06 18:08 9/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 Serial.println("It very dark, extremely overcast or night time");
 digitalWrite(13, HIGH);
 digitalWrite(12, HIGH);
 }
 delay(750); // 750ms time delay for sensor readings.
}

GIF 1 LDR Photoresistor & LEDs Loop in Action.

// LEGEND
//

No fingers on -> its bright -> LEDs
off.

One finger on -> it moderately
bright -> one LED on.

Two fingers on -> it's dark -> both
LEDs on.

4.1.3 Calibration of the LDR

Batson

LDR Calibration

/* Calibration of LDR values of Ohms to LUX values using a LUXmeter.
In this sketch, the calibration of LDR values to
*/

#include <Adafruit_Sensor.h>

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:gif_led_ldr.gif
https://student-wiki.eolab.de/doku.php?do=export_code&id=amc2022:groupd:start&codeblock=3

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

int light = 0; //LDR readings taken and stored at pin A0.
int lightCal = 0; //creating variable to store calibrated LUX values
values and be called later in the loop.

int LEDPIN_1 = 27; //LED pins used to react to light value
differences.
int LEDPIN_2 = 14;

//LDR Calibration Parameters
#define SNS_LIGHT_PIN 0
int sns_light_raw = 0; // the raw light value is taken from the input
pin of the LDR
float SNS_LIGHT_SLOPE = 0; //variable to store value relating to
(assumed) linear relationship between LUX and Ohmsreadings
float SNS_LIGHT_OFFSET = 0;

int light_sensor_mean(int sensor_pin, int iterations=10) { //Creating
an initial reading to measure against iterations.
 int reading = 0;
 Serial.println("Calculationg mean of readings... ");
 Serial.println("\nReading raw value...");
 Serial.print("Iterations: ");
 Serial.println(iterations);

 int temporary_value = 0; //temporary value collected of raw light
reading.
 for (int i=0; i<iterations; i++){
 reading = analogRead(sensor_pin);
 Serial.println(reading);
 temporary_value = temporary_value + reading; //saving the raw LDR
sensor readings into a temporay value folder for further manipulation.
 delay (10);

 }

 Serial.print("/nMean of raw values: ");
 int mean = temporary_value/iterations; //calculating the mean value
of raw readings using the number of trials(iterations) it passed
through.
 Serial.println(mean);
 return mean;
}

void light_sensor_calibration(int sensor_pin, int iterations=10){
 Serial.println("==========================");
 Serial.println("Light Sensor Calibration");
 Serial.println("==========================");

 int x1 = light_sensor_mean(sensor_pin, iterations); //calibration at
this stage takes place in teh serial monitor. Corresponding values on

2025/07/06 18:08 11/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

the LUX meter and given in.
 Serial.print("x1 from reading: ");
 Serial.println(x1);

 Serial.println("Enter LUX value from luxmeter (y1): ");
 delay(100);
 while(Serial.available() == 0){} //Wait for user input
 int y1 = Serial.parseInt(); // Lux value
 Serial.read(); // Drop "/n" character from partInt()
 Serial.print("Lux value registed: ");
 Serial.println(y1);

 int x2 = light_sensor_mean(SNS_LIGHT_PIN, 10); // several x values
are taking to better map the relationship between LUX from the meter
and digital to analog range (0-4096) from the LDR.
 Serial.print("x2 from reading: ");
 Serial.println(x2);

 Serial.println("Enter LUX value from luxmeter (y2): ");
 delay(100);
 while(Serial.available() == 0){} //Wait for user input
 int y2 = Serial.parseInt(); // Lux value
 Serial.read(); // Drop "/n" character from partInt()
 Serial.print("Lux value registed: ");
 Serial.println(y2);

 SNS_LIGHT_SLOPE = get_slope(x1,x2,y1,y2); //
 Serial.print("Calculated Slope: ");
 Serial.println(SNS_LIGHT_SLOPE);
 Serial.println("Save this value in variable SNS_LIGHT_SLOPE");

 SNS_LIGHT_OFFSET = get_offset(x1,x2,y1,y2);
 Serial.print("Calculated Offset: ");
 Serial.println(SNS_LIGHT_OFFSET);
 Serial.println("Save this value in variable SNS_LIGHT_OFFSET");

 Serial.println("======================");
 Serial.println("Calibration complete!");
 Serial.println("======================");

}

void light_sensor_test(int sensor_pin){
 Serial.print("Light sensor reading raw: ");
 Serial.println(light_sensor_value_raw(sensor_pin));
 Serial.print("Light sensor reading lux: ");
 Serial.println(light_sensor_value_lux(sensor_pin));
}

int light_sensor_value_raw(int sensor_pin){
 /*

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

 * Return Light sensor raw value
 */
 return analogRead(sensor_pin);
}

int light_sensor_value_lux(int sensor_pin){
 /*
 * Return Light sensor in lux
 */
 int raw = light_sensor_value_raw(sensor_pin);
 return (SNS_LIGHT_SLOPE*raw) + SNS_LIGHT_OFFSET;
}

int get_slope(int x1, int x2, int y1, int y2){
 /*
 * Return slope (m) from linear function ADC
 *
 * Linear function y=mx+b
 * m = (y2-y1)/(x2-x1)
 * reference: https://keisan.casio.com/exec/system/1223508685
 */

 return (y2-y1)/(x2-x1);
}

int get_offset(int x1, int x2, int y1, int y2){
 /*
 * Linear function y=mx+b
 * b = (x2y1-x1y2)/(x2-x1)
 * reference: https://keisan.casio.com/exec/system/1223508685
 */

 return (x2*y1-x1*y2)/(x2-x1);
}

void setup() {
 pinMode(LEDPIN_1, OUTPUT);
 pinMode(LEDPIN_2, OUTPUT);
 delay(100); //100ms delay
 lightCal = analogRead(SNS_LIGHT_PIN); //take a single reading and
store it in lightCal variable.
 // This gives us preleminary value to compare and set the standard in
the loop.

 light_sensor_calibration(SNS_LIGHT_PIN);
}

void loop() {

2025/07/06 18:08 13/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 // || PHOTORESISTOR ||
 // Take reading using analogRead() on sensor pin and store it in
lightcal
 lightCal = analogRead(SNS_LIGHT_PIN);

 //set threshold reactions based on lightcalibrated value
 if (lightCal < 2000) { // when its bright (i.e greater than
450Ohms), both LEDs will be off to save eergy)
 Serial.println("It very bright, lots of natural light");
 digitalWrite(LEDPIN_1, LOW);
 digitalWrite(LEDPIN_2, LOW);
 }

 else if (lightCal > 1000 && light < 2000) { //medium amount of light
to show one LED at a time).
 Serial.println("moderate light quantity, quite cloudy");
 digitalWrite(LEDPIN_1, HIGH);
 digitalWrite(LEDPIN_2,LOW);
 }
 else { // both LEDs turn on when the surroundings are dark.
 Serial.println("It very dark, extremely overcast or night time");
 digitalWrite(LEDPIN_1, HIGH);
 digitalWrite(LEDPIN_2, HIGH);
 }
 delay(750); //750ms delay between sensor readings.
}

While this calibration technique was very interesting to learn and execute, it was later on decided in
the project that the LDR reading could be more simply mapped, and more importantly with less error.
The problem with this calibration is that a linear relationship is assumed between LUX readings and
12 bit ADC range recorded from the LDR. This is in reality not the case, and with the nuisance of first
needing a LUX meter to first calibrate the sensor when using it (which I didn't have access to in
Barbados) a simpler function was used to interpret light readings from the LDR for the later parts of
the project.

Table 1 : Qualitative Calibration for the LDR Setup in a Closed Room in Barbados. Batson

Inside
measurements.

light conditions corresponding value
Arduino UNO Corresponding Value ESP32

ADC Range = 0 - 1024 ADC Range = 0 - 4096
Lots of Natural and
Ambient light value < 230 light value < 1300

Moderate amounts of
Light 230 < light value < 500 1300 < light value < 2500

Meager illumination of
Light light value > 500 light value > 2500

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

4.2 DHT 11 x ESP32

Batson

Having gained some traction with Arduino UNO as the microcontroller, we decided it would be a good
idea to try out the ESP32 to test the DHT11 sensor. Lessons learned so far from the LDR setup
described above were concatenated in this first try.

4.2.1 Code

Batson

DHT11xESP32 Test: Heating Management Optimization

/* Use ESP32 to read temperature values of DHT11.
 Control the on/off cycles of a fan (actuator) by threshold values.
*/

/* Slowly combining parts of the code.
 Heating & lighting components, no MQTT.
*/
#include "DHT.h"
#include <Adafruit_Sensor.h>

int light = 15; //LDR readings taken and stored at pin A0.
int DHTPIN = 4; //DHT pin to store and take readings at A1.

int LEDPIN_1 = 27; //LED pins used to react to light value
differences.
int LEDPIN_2 = 14;
int FAN = 26; //Fan to simulate actuator heat pump, reacts to
temperature input.

#define DHTTYPE DHT11 // defining DHT type for ESP32 and scope in
general.
DHT dht(DHTPIN, DHTTYPE);

void setup() {
 Serial.begin(9600); //initiate serial.
 Serial.print(F("DHT11 Test"));
 dht.begin();

https://student-wiki.eolab.de/doku.php?do=export_code&id=amc2022:groupd:start&codeblock=4

2025/07/06 18:08 15/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 pinMode(15, INPUT); //setting LDR pin as input.
 pinMode(LEDPIN_1, OUTPUT); //Setting LEDs as outputs, since they are
reacting to incoming light data
 pinMode(LEDPIN_2, OUTPUT);
}

void loop() {
 //DHT
 int temperature = dht.readTemperature(); // read Temperature in °C

 Serial.print(temperature);
 String temperatureString = String(temperature);

 //Serialprintln(hic);
 Serial.println(F("°C"));
 delay (2000);

 Serial.println("The string equivalent to integer temperature is " +
temperatureString);
 char* TempArr = &temperatureString[0];
 //Serial.println(TempArr);

 //Fan off-on cycle
 if (temperature > 30) {
 Serial.println("Its becoming hot in here - The fan is on");
 digitalWrite(FAN, HIGH);
 }
 else {
 Serial.println("ITs cold or tolerable; lets save money!");
 digitalWrite(FAN, LOW);
 }

 //LDR
 light = analogRead(15); //read light value from LDR in Ohms EVALUATE
SHOUÖD LIGHT NOT 15
 Serial.println(light);

 if (light < 1300) {
 Serial.println("It very bright, lots of natural light");
 Serial.println("Both LEDs are off");
 digitalWrite(LEDPIN_1, LOW);
 digitalWrite(LEDPIN_2, LOW);
 }
 else if (light > 1300 && light < 2500) { //medium amount of light to
show one LED at a time).
 Serial.println("moderate light quantity, quite cloudy");
 digitalWrite(LEDPIN_1, HIGH);
 digitalWrite(LEDPIN_2, LOW);
 }

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

 else { // both LEDs turn on when the surroundings are dark.
 Serial.println("Its very dark, extremely overcast or night time");
 digitalWrite(LEDPIN_1, HIGH);
 digitalWrite(LEDPIN_2, HIGH);
 }
 delay(750); //750ms delay between sensor readings.
}

4.2.2 Schematics

Batson

Figure 8 Schematic Representation of the First Trial of Fan Connection to esp32.

4.2.3.1 - Troubleshooting Components and Code

Akuri & Batson

Upon execution of this set-up, some substantial dilemmas came to light. For one, it was evident the
microcontroller was not adequately powering the fan optimally. Primarily for this reason we decided
to configure a relay and battery to adjacently control the functioning of the fan as an output to

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:schematic_2_ldr_temp_fan_.png

2025/07/06 18:08 17/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

temperature values which, for long periods of time could be recorded over 30°C in Barbados where
the trial was conducted. The relay was our solution to an independent power supply for the operation
of the motor.

Figure 9 Change in Configuration of the fan, now moderated by a relay and 9V battery pack.

Although the code for this setup worked, there were two obstacles that arose when we tried testing
the setup. The first issue was with the sensor. During the testing phase, the DHT11 proved to be quite
unreliable. Sometimes it would work as required but most of the time, it became quite inconsistent
with the data it provided slowing down the entire process. The second issue was with the first type of
relay used. The first type of relay used with the fan connection was only compatible with a 5v supply.
However, the board used only had a 3v pin. Because of this, the relay will receive the signal from the
pin but would not be able to turn on the fan because of the low voltage supply. Notwithstanding, we
were able to find solutions to both of these issues. The first one was solved by completely changing
the DHT11 sensor to a more responsive and reliable option which was the SHT31 and a less powerful
but equally efficient relay was used. The new relay could support both 3v and 5v. Parts of the code
were modified and rewritten in accordance with the new components. The new changes proved to be
the right move, as the setup worked without any issues.

4.2.3.2 - SHT31 with Fan

Akuri

As the project moved further, there was a lot of trial and error. This also meant our understanding and
knowledge of the different components started expanding. This path led us to change from the DHT11
sensor to the SHT31 Sensor. Although both measure temperature, we discovered that the DHT11 was
not as reliable and as responsive as the SHT11. The reason was not explicitly clear, the hardware
simply read values inconsistently. After switching from the DHT to the SHT temperature sensor, value
readings were clearer. The coding for the simultaneous detection and action of both sensors is shown
below:

Modified Relay and SHT

/* Combined parts of the code for both sensors and their target
devices.
 Cooling(Fan) & lighting components (No MQTT yet).
*/
#include <Arduino.h>
#include <Wire.h>
#include "Adafruit_SHT31.h"
#include <Adafruit_Sensor.h>

bool enableHeater = false;

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:dht11_to_esp32_wroom_32_wth_fan_and_relay_batteries_bb.png
https://student-wiki.eolab.de/doku.php?do=export_code&id=amc2022:groupd:start&codeblock=5

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

uint8_t loopCnt = 0;

Adafruit_SHT31 sht31 = Adafruit_SHT31();

int light = 15; //LDR readings taken and stored at pin A0.
int LEDPIN_1 = 27; //LED pins used to react to light value
differences.
int LEDPIN_2 = 14;
int FAN = 26; //Fan to simulate actuator heat pump, reacts to
temperature input.
#define relay 4

void setup() {

 Serial.begin(9600); //does this start both sensors or just one?
 Serial.print(F("DHT11 Test"));
 pinMode(relay,OUTPUT);
 if (! sht31.begin(0x44)) { // Set to 0x45 for alternate i2c addr
 Serial.println("Couldn't find SHT31");
 while (1) delay(1);
 }

 Serial.print("Heater Enabled State: ");
 if (sht31.isHeaterEnabled())
 Serial.println("ENABLED");
 else
 Serial.println("DISABLED");

 pinMode(15, INPUT);
 pinMode(LEDPIN_1, OUTPUT); //Setting LEDs as outputs, since they are
reacting to incoming light data
 pinMode(LEDPIN_2, OUTPUT);
}

void loop() {
 //DHT
 float temp = sht31.readTemperature();
 float h = sht31.readHumidity();

 if (! isnan(temp)) { // check if 'is not a number'
 Serial.print("Temp *C = "); Serial.print(temp);
Serial.print("\t\t");
 } else {
 Serial.println("Failed to read temperature");

 }
 if(temp>=30) // Turn the fan on: We are a using a
Normally closed connection here for the relay
 {
 // Normally Closed (NC) configuration, sends HIGH current signals
to stop the current flow

2025/07/06 18:08 19/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 digitalWrite(relay, HIGH);
 Serial.println("Fan is ON");
 delay(5000);
 }
 else // Turn the fan off
 {

 // Normally Closed (NC) configuration, sends LOW signals to stop the
current flow
 digitalWrite(relay, LOW);
 Serial.println("Fan is OFF");
 delay(5000);
 }
 }

 //LDR
 int light = analogRead(15); //read light value from LDR in Ohms
EVALUATE SHOUlD LIGHT NOT 15
 Serial.println(light);

 String lightString = String(light);
 Serial.println("The string equivalent to integer light is " +
lightString + "°C");

 if (light < 1300) {
 Serial.println("It very bright, lots of natural light");
 Serial.println("Both LEDs are off");
 digitalWrite(LEDPIN_1, LOW);
 digitalWrite(LEDPIN_2, LOW);
 }
 else if (light > 1300 && light < 2500) { //medium amount of light to
show one LED at a time).
 Serial.println("moderate light quantity, quite cloudy");
 digitalWrite(LEDPIN_1, HIGH);
 digitalWrite(LEDPIN_2, LOW);
 }
 else { // both LEDs turn on when the surroundings are dark.
 Serial.println("Its very dark, extremely overcast or nighttime");
 digitalWrite(LEDPIN_1, HIGH);
 digitalWrite(LEDPIN_2, HIGH);
 }
 delay(750); //750ms delay between sensor readings.

 char* lightArr = &lightString[0]; //client.publish needs matching
format of topic folder and light value
 //Serial.println(lightArr);
 // Serial.print (" this is the array");

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

}

This setup is not just relatively simple to put together but also very efficient and responsive. The
different components have also been connected in such a way that there is enough energy available
to power up each component in the circuit but the circuit is also kept in an open state (meaning
there's no flow of current) while the readings of the sensor remain within a certain limit as stated in
the code. A simplified colored view of the setup and its schematic is displayed in the figures below.
The 3v relay plays an important role because it helps control the flow of current to the fan. It closes
the circuit (allowing the flow of current) based on the commands it receives from the esp32 board and
the batteries are there to make sure that there is always enough power being provided to the circuit.

Figure 10 - A Simple view of the circuit setup
(Akuri)

Figure 11 - Schematics of the setup (Akuri)

5.0 Results of Combining the Codes, MQTT & NIG

Batson, Akuri

After receiving successful testing and debugging for the used components of the kit, the project
continued to be further developed. At this point the project takes sensory data and turns on
components representing appliances, but, we want to be able to publish these results online to
visualize and monitor them. For this reason we used MQTT and NIG. Important as well to note; we
we're working between Germany and Barbados, so we varied the setup to enable project execution
exercise on both sides.

5.1 Schematics

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:sht31_to_esp32_wroom_32_wth_fan_and_relay_batteries_bb.png
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:sht31_to_esp32_wroom_32_wth_fan_and_relay_batteries_schmetic.png

2025/07/06 18:08 21/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Figure 12 Complete Configuration of the Project (with DHT11 & Groove Relay). (Batson)

Figure
13

Complete Configuration of the
Project (SHT31). 3v Relay + 4v
battery (Akuri) Figure

14
Complete Configuration of the
Project (SHT31). 5v Relay + 9v
battery (Akuri)

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:complete_schematic.png
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:complete_setup_with_sht31_and_ldrs_including_target_devices.jpg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:sht31_to_esp32_wrover_wth_fan_and_5v_relay_batteries_bb.jpg

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

Figure 15 Complete Schematic, R1= 10K Ohms, R2 & R3 = 220Ohms

5.2 Code

Batson, Akuri

Complete Code: Warehouse Management and Optimization

//#include "DHT.h" //library relevant for dht sensor operation
commands.
#include <Adafruit_Sensor.h> //command repository for basic sensor
communication functions.
#include <SPI.h> //librarz facilitating communication with SPI devices
(eg. RTC).
#include <Ethernet.h>
#include <PubSubClient.h> //library allows sending and receiving MQTT
messages.
#include <WiFi.h> //internet connection enabling library.
#include <Wire.h> //communication with I2C devices.
#include "Adafruit_SHT31.h"

/* int DHTPIN = 33; //DHT pin to store and take readings at A1.*/
int LEDPIN_1 = 27; //LED pins used to react to light value
differences.
int LEDPIN_2 = 14;
int FAN = 32; //Fan to simulate actuator of fan, reacts to temperature
input.

char lightarray[16]; // store the light value.
char temperaturearray[16]; // store the temperature value.

Adafruit_SHT31 sht31 = Adafruit_SHT31();

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:all_components_schematic.png
https://student-wiki.eolab.de/doku.php?do=export_code&id=amc2022:groupd:start&codeblock=6

2025/07/06 18:08 23/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

// WiFi
const char* ssid = "iotlab"; // The network's name
// CNXK004A2418
const char* password = "iotlab18"; // password for the network
// ****************

// MQTT Broker
const char* mqtt_broker = "broker.hivemq.com"; //
//const char* mqtt_server = "hsrw.space"; // MQTT Broker IP address
const char *mqtt_username = "emqx";
//const char* mqtt_username = "user";
const char *mqtt_password = "public";
//const char* mqtt_password = "mqtt";
const int mqtt_port = 1883;

const char* myname = "Adiel";
const char* topic_up_temperature = "amc2022/groupD/up/Temperature";
const char* topic_up_Light = "amc2022/groupD/up/Light";
const char* topic_up_Fan_Switch = "amc2022/groupD/up/FanSwitch";
const char* topic_up_LEDPIN_1 = "amc2022/groupD/up/LEDPIN_1";
const char* topic_up_LEDPIN_2 = "amc2022/groupD/up/LEDPIN_2";

void initWiFi() { //initiate wifi connections void
 WiFi.mode(WIFI_STA);
 WiFi.begin(ssid, password);
 Serial.print("Connecting to WiFi ..");
 while (WiFi.status() != WL_CONNECTED) {
 Serial.print('.');
 delay(1000);
 }
 Serial.println(WiFi.localIP());
}

void callback(char* topic, byte* payload, unsigned int length) {
//callback setup to ensure functtion doesnt run before task is
completed
 Serial.print("Message arrived [");
 Serial.print(topic);
 Serial.print("] ");
 for (int i = 0; i < length; i++) {
 Serial.print((char)payload[i]);
 }
 Serial.println();
}

WiFiClient ethClient;
PubSubClient client(ethClient);

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

void reconnect() { //It will reconnect to the server if the connection
is lost using a blocking reconnect function

 while (!client.connected()) {
 Serial.print("Attempting MQTT connection...");
 // Attempt to connect
 if (client.connect("arduinoClient", mqtt_username, mqtt_password))
{
 Serial.println("connected");

 } else {
 Serial.print("failed, rc=");
 Serial.print(client.state());
 Serial.println(" try again in 5 seconds");
 // Wait 5 seconds before retrying
 delay(5000);
 }
 }
}

void setup() { //basic setting for iniating serial, sensors, setting
baud rate.
 Serial.begin(115200);
 initWiFi();
 Serial.print("RRSI: ");
 Serial.println(WiFi.RSSI()); //Ensure & check if wifi connection is
quality. ESP32 has low range, comparative to other devices.
 client.setServer(mqtt_broker, 1883); //MQTT data transmission using
port 1883
 client.setCallback(callback);

 delay(1500); // Allow the hardware to sort itself out, avoid clashes
of commands

 Serial.println("SHT31 test");
 if (! sht31.begin(0x44)) { // 0x44 is the i2c address
 Serial.println("Couldn't find SHT31");
 while (1) delay(1);
 }

 /* pinMode (DHTPIN, INPUT); // sets digital pin 33(DHT) as an input.
*/
 pinMode(33, INPUT); //Sets LDR as an input on pin .
 pinMode(LEDPIN_1, OUTPUT); //Setting LEDs as outputs, since they are
reacting to incoming light data.
 pinMode(LEDPIN_2, OUTPUT);
 pinMode(FAN, OUTPUT); // sets digital pin 32 (the relay) as an
output, to temperature data.

2025/07/06 18:08 25/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 client.subscribe (topic_up_temperature); // subscribe to temperature
topic
 client.subscribe (topic_up_Light); // subscribe to temperature topic
 client.subscribe (topic_up_Fan_Switch); // subscribe to temperature
topic
 client.subscribe (topic_up_LEDPIN_1); // subscribe to temperature
topic
 client.subscribe (topic_up_LEDPIN_2); // subscribe to temperature
topic

}

void reading_data(){

 //LDR
 int light = analogRead(33); //read light value from LDR in
Ohms(Physical pin D33)
 Serial.println(light);

 if (light > 3500) {

 Serial.println("Its very dark, extremely overcast or night time");
 Serial.println("Both LEDs are ON");
 digitalWrite(LEDPIN_1, HIGH);
 digitalWrite(LEDPIN_2, HIGH);

 }
 else if (light > 1100 && light < 3500) { //medium amount of light to
show one LED at a time).
 Serial.println("moderate light quantity, quite cloudy");
 digitalWrite(LEDPIN_1, HIGH);
 digitalWrite(LEDPIN_2, LOW);
 }
 else { // both LEDs turn on when the surroundings are dark.
 Serial.println("It very bright, lots of natural light");
 Serial.println("Both LEDs are OFF");
 digitalWrite(LEDPIN_1, LOW);
 digitalWrite(LEDPIN_2, LOW);
 }
 delay(10); //750ms delay between sensor readings.

//SHT

 int temperature = sht31.readTemperature(); // read Temperature in °C
 Serial.print(temperature);
 Serial.println(F("°C"));
 delay (50);

 if (temperature > 30) {
 Serial.println("Its becoming hot in here - The fan is on");

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

 digitalWrite(FAN, HIGH);
 }
 else {
 Serial.println("Its cold or tolerable; lets save money!");
 digitalWrite(FAN, LOW);
 }

 if (! isnan(temperature)) { // check if 'is not a number'
 Serial.print("Temp *C = "); Serial.print(temperature);
Serial.print("\t\t");
 } else {
 Serial.println("Failed to read temperature");
 delay (50);
 }
 /*
 if(temperature>=30) {
 // Turn the fan on: We are a using a Normally closed connection
here for the relay (normally open grove-relay).
 // Normally Closed (NC) configuration, sends HIGH current signals
to stop the current flow
 digitalWrite(FAN, HIGH);
 Serial.println("Fan is ON");
 delay(50);
 }
 else { // Turn the fan off
 // Normally Closed (NC) configuration, sends LOW signals to stop the
current flow
 digitalWrite(FAN, LOW);
 Serial.println("Fan is OFF");
 delay(50);
 }*/
 String temperaturestr = String(temperature);// for MQTT
transmission
 temperaturestr.toCharArray(temperaturearray,
temperaturestr.length() + 1);
 client.publish(topic_up_temperature, temperaturearray);// To
publish the topic under
 Serial.println("Publish temperature");

 String lightstr = String(light); // for MQTT transmission
 lightstr.toCharArray(lightarray, lightstr.length() + 1);

 client.publish(topic_up_Light, lightarray); // light values are
published under the topic light
 //client.publish(topic_up_LEDPIN_1, lightarray);
 delay(2000);
}

void loop() {

2025/07/06 18:08 27/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

 //MQTT
 if (!client.connected()) {
 reconnect();
 }
 client.loop();

 reading_data(); // reading data from the different sensors from
MQTT_publishing

 /* delay(2000); // delay by 2 sec */

}

5.3 Serial Monitor, Graphana and Node-Red

Akuri

After the setup was installed in a specific location inside a building, the SHT31 and LDR were
programmed accordingly. The code was uploaded to the ESP32, the results could be seen instantly on
the serial monitor, Node-Red, and the dashboard in Grafana. For outdoor testing, the sensors need to
be isolated safely in order not to get into contact with the water from the pond, blown away by the
wind, or even taken away by a bird. Therefore, for testing, the measurements were taken indoors
over a period of about 5 days during the summer but in an indoor location with air conditioning. The
results of those measurements can be seen in figure 16. The temperature spikes from 28 to 30 to
activate the fan. It can be seen, that the sensors immediately detect their respective values and
report changes almost instantly.

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

Fig. 16 Measurement results of the SHT-31 and LDR sensors visualized in Grafana

6.0 Discussion & Reflection

Batson, Akuri

A simple optimization of heating and lighting was successfully conducted. The project has many
possibilities for further refining and development. The flow chart below shows a simplified view of
what is being executed

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:grafana_results.png

2025/07/06 18:08 29/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Fig. 17 - A flowchart of the processes taking place (Akuri).

The entire design and setup of a prototype that interprets environmental parameters (light intensity &
temperature) and takes action autonomously with respect to given measurement intervals and
parameters, was conceived to optimize building functionality and save resources. Data transaction
and monitoring were also successfully conducted using MQTT, influx DB(for connecting data points
and types) and Grafana (visualization). Although this goal was achieved, the setup can still be further
upgraded to better optimize output switches, include more appliances, use better sensors, better data
monitoring and transferring software and more.

Obstacles Some obstacles which were met included; integrating both sensors individually, and then
together with MQTT and internet protocol. In this regard, many of the ADC2 pins of the board are not
usable while trying to establish an internet connection. This produced the most unspecified error
message of the project which consumed the most time first recognize the exact problem and then fix
it.

Limitations & Possible Improvements Despite the fact that the project is functional, it should only
be run under controlled conditions. This is because, if the LDRs are to be installed on the roof of the
warehouse, they need to be placed in special protective frames to protect them from rain, wind, or
even birds. Important to note, is the range as well for which the LDR is or can be applicable; different
measurements of light intensity inside and outside for example speak more about differences in light
quality differences in than light intensity. Therefore measurements made with sunlight would have an
alternate value to measurements from artificial light sources. In reality, this ambient light intensity
difference should be accounted for with a standardized sensor and method of placement. The same

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agroupd%3Astart&media=amc2022:groupd:flow_chart_of_entire_setup.drawio.png

Last update: 2023/01/05 14:38 amc2022:groupd:start https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

https://student-wiki.eolab.de/ Printed on 2025/07/06 18:08

holds for the temperature sensor. This is especially necessary in the case where it rains, it needs to
be protected from getting wet if not this would spoil the sensor. It would be advantageous to either
install signal boosters or position the esp32 in a strong WiFi signal strenght because the I2C at 100
kHz bus frequency runs slowly (Adafruit,2022). At this rate, the ESP32 leaves 10ms gaps between I2C
transactions. This can slow down your I2C interactions considerably, especially if there are a lot of
output device to turn on and off simultaneously and data to be transferred successfully in the first
place.

As a prototype, this project has many areas for improvement. The LDR calibration in Table 1 can be
better designed to reflect legal workplace light quantity levels requirements. This would ensure the
amount of light delivered by the LEDs is sufficient and legally allowable. On this thread, the type, and
size of the LEDs and therefore the connecting apparatus and power supply would need to be
recalculated and implemented using certified replacement products from the market, and conducted
by certified personnel.

With a working system another consideration would be the trigger for the lights to turn off when the
warehouse is not in use and it is simultaneously dark outside. This can be amended for in code, in
conjugation with an RTC. This way the optimization system will work for duration of shift times and
turn off all necessary appliances for the duration of closing time each day.

Another advantage of the RTC would be in optimizing the energy saving potential of the system itself.
Measurements can be taken twice every hour, which would take a matter of seconds for the esp32 to
connect to the Wi-Fi, and transmit data and control outputs. A deep sleep protocol with a Real Time
Clock (RTC) would be extremely advantageous in bringing about these energy savings; the esp32
could be idle (in deep sleep) the vast majority of the time.

Video Tutorial In this vdieo we introduce the project, project prototype and outline the execution of
the project in detail.

amc_presentation.mp4

In conclusion, the prototype enabled us to gain a deep insight into the planning and implementation
of smart systems. While we've learned quite a lot, we've just scratched the surface. These systems
are complex to develop and integrate. It was fun giving it a try.

7.0 Literature References and Resources

- Mahiri, F., Najoua, A., & Ben Souda, S. (2022). 5G-Enabled IIoT Framework
Architecture Towards Sustainable Smart
Manufacturing. In International Journal of Online & Biomedical Engineering;
2022, Vol (Bd. 16, Nummer 4, S. 4–20).
https://doi.org/10.3991/ijoe.v18i04.27753

- D. Srivastava, A. Kesarwani, S. Dubey(2018) Measurement of Temperature and
Humidity by using Arduino Tool and
DHT11 Department of Computer Applications, JSS Academy of Technical
Education, Noida, India

https://student-wiki.eolab.de/lib/exe/fetch.php?cache=&media=amc2022:groupd:amc_presentation.mp4

2025/07/06 18:08 31/31 Building Appliance Optimization

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

- Adafruit, (2022),//ESP32-S2 Bugs & Limitations// https://
learn.adafruit.com/adafruit-magtag/esp32-s2-bugs-limitations

- Seeedstudio. (2021). //Grove - Temp and Humi Sensor(SHT31).//
https://wiki.seeedstudio.com/Grove-TempAndHumi_Sensor-SHT31/.

- Seeedstudio. (2021). //Grove - Relay.//
https://wiki.seeedstudio.com/Grove-Relay/ .

- Amperite. (2019). //WHAT IS A RELAY AND WHY ARE THEY SO IMPORTANT?//
https://amperite.com/blog/relays/.

Source of components:
- https://www.amazon.de/gp/product/B01IHCCKKK/
- iotlab of Hochschule Rehin Waal

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

Last update: 2023/01/05 14:38

https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc2022:groupd:start&rev=1662484580

	Building Appliance Optimization
	1.0 Introduction
	2.0 Materials & Software
	2.1 ESP32 & Wi-Fi Connection
	2.2 Arduino UNO
	2.3 LDR Photoresistor
	2.4 DHT11 Temperature Sensor
	2.7 - SHT
	2.8 Software Packages

	3.0 Execution of Project
	4.0 Testing Phase
	4.1 LDR Photoresistor x Arduino UNO
	4.2 DHT 11 x ESP32
	4.2.3.1 - Troubleshooting Components and Code

	5.0 Results of Combining the Codes, MQTT & NIG
	5.1 Schematics
	5.2 Code
	5.3 Serial Monitor, Graphana and Node-Red

	6.0 Discussion & Reflection
	7.0 Literature References and Resources

