2026/01/14 02:38 1/22 1. Abstract

Portable Air
Quality Monitoring

Statio .
e (1) & R

: = .Il-
Presentod by . WilFi Connectivity
Group H ‘ L
s | » Cloud Data Storage
" -

« Portable battery operated

* Battery Monitoring
= Graphical Representation of Data

* Methane and other harmful gases

Contral

1. Abstract

Our project is based on the idea of being able to monitor the air quality of any place with a simple
cost effective kit. In the market there are lots of options at high prices with questionable reliability.
Our intention is to give a step by step breakdown of how with an Arduino kit anyone is able to build
their own air monitor. The importance of this project relies on two things: using accessible materials
and learning how to program those materials to access the data and have a visual representation. At
the heart of our project is the utilization of the ESP-32 micro-controller which WiFi capabilities allows
the user to send and store information online. Furthermore, by integrating different online services
such as Node-Red and Grafana, anyone can have instant access to the information stored for
further analysis and/or comparison.

2. Introduction

We are susceptible to environmental elements that can have harmful effects on our health. One of the
most important factors to consider is the quality of the air we breathe, unfortunately most of us are
not conscious of what is in the air and how through time the elements in the air we consume change.
For that reason we have developed a tool that allows anyone with an Arduino Kit and comprehensive,
but easy to follow coding to collect, send and represent data describing the air quality through time of
the place where the station is placed.

The exposure to harmful air elements is of great importance for governments around the world, and
many laws have been enacted to protect people at work and at the places where they live in order to
reduce the exposure to harmful elements, however a lot can still be done and people need to be
aware of the environment surrounding them. According to the World Health Organization, 3.2 million
deaths occur every year around the world due to exposure at home to smoke from dirty cookstoves
and fuels and is estimated that 4.2 million deaths a year are due to exposure to outside air pollution.
Finally “9 out of 10 people worldwide live in places where air quality exceeds WHO guideline
limits**." While housing codes requires the installation of Carbon Monoxide and Smoke detectors,
they only alert when thresholds are exceeded, but we are not able to see how through the day or

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

months those values are changing, additionally there is a strong correlation between air quality and
the proximity to busy street intersections or industrial complexes, that is where the air quality device
would inform the user of the status of the air they consume, and with time the data gathered has the
potential to give out important information about the status of the environment.

A few key indicators provide most of the data necessary to assess the quality of air. Due to industrial
processes and the burning of fossil fuels for energy production we can anticipate some of the most
frequent gas components that can cause harm. The Arduino Kit in combination with the ESP-32
micro-controller and adaptable sensors are able to “read” the quality of the air and translate it into
data that we can see and understand. The microcontroller is able to process the data and transmit it
over Wifi, where online tools like Grafana are able to visually represent the data of any required
period of time to produce graphs that are very informative.

The device is made as a reliable indicator of possible common harmful elements in the air, its
portability and connectivity allows for its use in almost any setting and most importantly the low cost
of making it combined with easy to follow instructions, makes it an accessible tool that anyone can
invest into.

Key device features used for this project are: Connectivity, Portability and Data
Management.

3. Method

Air Monitoring Project AMC 2022 Group 5

figure 1 Setup showing the connections of sensors to ESP32

https://student-wiki.eolab.de/ Printed on 2026/01/14 02:38

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agrouph%3Astart&media=amc2022:grouph:img_6776.jpg

2026/01/14 02:38 3/22 1. Abstract

3.1 Temperature and Humidity Measurement

The DHT-22 sensor is a dual system peripheral that is able to measure temperature and humidity. Its
use has many applications in different settings. Due to its easy operation and low cost, a wide range
of projects rely on the sensor to get accurate readings. From terrariums to weather stations and
automated climate control systems, the usability of the sensor proves to be a great tool. In
determining Air quality it is very important to measure both temperature and humidity, since it has
direct effects on the health of a person. Knowing those 2 factors can help the user get an overall
picture of the environment surrounding her or him.

For our purposes we initiated this project with the DHT-22 sensor because it was simple to install and
program, but we also believe that for any upgrading of the system or expansion to a more
complicated set-up in the field of ambiental measuring, the temperature and humidity are a must.
Additionally the ability to save the data collected and to be represented in Grafana allows the user to
have a better understanding of things that could be done in order to improve the Air quality of the
room or apartment, for instance the user can see in detail how closing the curtains on hot summer
days can help maintain the space cooler, or how high humidity in closed spaces can have negative
consequences such as the proliferation of mold which both causes damages to the property and has
negative health risks. A great place to have the Air Quality station would be a basement or an attic,
where lack of moving air tends to create a setting where polluting particles and gasses can
accumulate without the owner or user of the space being aware.

Description of how the DHT22 sensor works can be found here.

3.2 Air Particles Measurement

Particle Matter are small solid particles and water droplets that are found in air. The size of those
particles vary greatly, some we can see with our naked eye, such as pollen, dirt and smoke, while
others we need tools like microscopes to detect them. The significance that the presence of those
particles have on our health depend on such factors as type of particle, quantity and duration of
exposure”. Due to industrialization and all that it entitles in terms of development, material use and
lifestyle, we humans are now more than ever exposed to higher concentrations of harmful particles
that are the culprits of multiple diseases. Determining the quality of the air we breath is directly
related to knowing how many and what type of those particles are present in the air. Therefore, we
have used the MQ2 sensor which not only detects certain types of particle matter but also its
concentration.

3.3 MQTT Database and WiFi Connection

In other to connect ESP32 to the MQTT Broker, the ESP32 must be connected to the internet. Since
ESP32 supports wifi, it could easily be connected to the local wifi by writing some lines of code on the
Arduino IDE.

To start we use the ESP-32 micro-controller that has very important features, WiFi capabilities to
transmit information digitally over any network connection which almost everyone has access to in
their houses or workplaces. Additionally, one can connect the controller to a Mobile Hotspot if doing
field air quality assessment where no WiFi is available but there is cell phone connection.

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:dht22_humidity_temperature_sensor

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

MQTT is a client-server publish/subscribe messaging transfer protocol. It uses the TCP/IP protocols to
interconnect network devices to the internet. MQTT connects the Client to the server and provides the
means to send an ordered, lossless, stream of bytes in both directions. MQTT Broker is computer
software, which enables MQTT clients to communicate. MQTT brokers receive the messages published
by clients, filter the message topics, and distribute them to subscribers. A client establishes the
network connection to the server by:

e Publishing messages to other clients
e subscribing to request messages
e can unsubscribe and disconnect from the server

A server acts like an intermediary between the publishers and subscribers. A server accepts network
connections from clients and messages published by the clients. A server also processes the
subscribe and unsubscribe requests from clients. Furthermore, a subscription is comprised of a topic
filter and maximum Qos. Each subscription within a session has a different Topic filter. Before
data/message is published, a topic name is required. The topic name must match against the
subscription known to the server. The message is sent to each client that has that matching topic
name. In this project, an MQTT Broker called MQTTX was used to transmit data from the sensors
below, where the data was then stored in a data base (influxdb) and then visualised using Grafana as
shown on figure 2 and 3 below.

MQTTX

Connections &2 e

. M Client D JEENTT
bestEbrokeremgx.io..

brakir, & mig. o @b,

I farmc2022{group

{"Tenperature™: 28, TOMORTE, "Humidity" : 38, "Heat Index™: 28, 14955
139, "C0":@,"Smoke" @, "LPG™ 18, "Battery Status™:108}

We are Group 511

{"Tenperature": 28, 70B80876, "Humidity" : 37. 98000153, "Heat Inde
=" 28, 141908102, °00": 8, "Smake™ 8, "LPG" : 8, "Battery Status":3184}

figure 2 Publish and subscription on MQTTX

Node Red

https://student-wiki.eolab.de/ Printed on 2026/01/14 02:38

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agrouph%3Astart&media=amc2022:grouph:screenshot_2022-08-31_at_23.57.19.png

2026/01/14 02:38 5/22 1. Abstract

Flow 1

v COMFMSn
Fit : msgpayioad — |
famcal22/groupsiup

v influeedb:BOBE/ db aingLiality

Figure 3 setup on node-red showing data from mqtt being stored in a data base (influxdb)

3.4 Battery Voltage Measurement

Since our device is powered by a battery for portability, it is important for us to know the status of the
battery. To measure the battery's voltage we can use a multimeter, but we want to integrate the
capabilities of the microcontroller to read voltages through its Analog to Digital Converter (ADC) pins.
Not only is this a more efficient approach by reducing costs but it can also help us access the
information online, where we are able to not only check the status of the battery in Grafana, but we
would also know when to replace it or even make changes to the sensors or code to improve
performance. The setup is done with the concept of creating a voltage divider. This is achieved by
creating a circuit within a bigger circuit and obtaining a reduced voltage with the introduction of
resistors connected in series. As shown in Figure #.

Vin Voltage/Potential
‘ Divider
23
Vout
1 Vout = - Vin
o= R1+R2
{:ﬁr]

Figure 4 Source:
https://www.electroniclinic.com/what-is-a-voltage-divider-or-potential-divider-formula-and-practical-uses/

Why we would lower the voltage is due to the micro-controllers specifications. The input voltage
cannot exceed 3.3V, otherwise we would risk damaging the controller. ESP-32 analog channels are of
12 bit which means the minimum step of each voltage level is between 0 and 4095 or 2**. Analog
channel produces a digital value between 0 and 4095 according to the voltage at the input of the
analog channel?, therefore:

@ e If the voltage is 0 at the input of the analog channel, the digital value will be zero.
e If the voltage is 3.3 volt at the input, the digital value will be 4095. So the

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agrouph%3Astart&media=amc2022:grouph:node-red_-_nig.eolab.jpg
https://www.electroniclinic.com/what-is-a-voltage-divider-or-potential-divider-formula-and-practical-uses/

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

ﬁ maximum voltage limit is 3.3 volt.

Because the battery used is 9V, we want to make sure that the ADC pin only receives up to 3.3V.
Knowing both the Voltage source, the Output Voltage and one of the resistor values, we can then find
the other resistor that would complete our circuit by using the Voltage/Potential Divider equation of
Figure 4. There are plenty of websites that have very easy to follow tools to find any of the values of
our equation. For our purposes we used https://ohmslawcalculator.com/voltage-divider-calculator.
Alternatively by knowing the resistors used we can calculate the output voltage. Since we are using
the hardware provided in the ELEGOO KIT, we have decided to use one 10k Ohms and one 5k Ohms
resistors connected in series, which provide us with an output voltage of 3V.

Description and Results can be found on this link.
3.5 Deep Sleep Mode and Power Saving

The use of a battery for power supply has a drawback, limited amount of energy available. With the
integration of the sensors and the continuous use of the microcontroller the battery life would last a
very short period of time, therefore certain measurements have to be placed in order to limit power
consumption and expand the battery life. ESP-32 has Sleep Modes, which are power consumption
settings that limit the use of peripherals and components until the device is awakened again. This
setting is very important in that the user can select what components of the micro-controller are to
stay active depending on the necessity of the project. For ESP-32 the following power modes are
available:

e Active
Modem-Sleep
Light-Sleep
Hibernation
Deep-Sleep

The specifications for the power consumption of each of the Sleep modes can be found on
this datasheet.

For the purposes of this project we have selected Deep-Sleep mode. In it only the Real Time Clock
(RTC) module, which keeps track of time and date in the absence of an external power supply, and
the Ultra-Light Co-processor (ULP) module which purpose is to perform readings through the ADC and
12C pins, remain active while the main processor is in Deep-Sleep mode as shown in Figure 5.

https://student-wiki.eolab.de/ Printed on 2026/01/14 02:38

https://ohmslawcalculator.com/voltage-divider-calculator
https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:link
https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:datasheet

2026/01/14 02:38 7/22 1. Abstract

Last Minude

7 ENGINEERS can

Deep Sleeep
Active: Inactive:
ULP Coprocessor [l ESP32 Core
B RTC B 'WiF
B Blustooth
B Eadio
B FPeripherals

Power Consumption:

ATC &
ATC Peripherals

Figure 5 ESP-32 Active Components during Deep Sleep mode. Source:
https://lastminuteengineers.com/esp32-sleep-modes-power-consumption//

Deep Sleep mode allows us to perform the following tasks:

1. Only use the device on a specified interval, since we only want to measure the Air Quality of the
ambient every # minutes.

2. While not in use, conserve as much power as possible.

3. Keep RTC clock active to set up the alarm that will turn on the device and sensors.

4. Have an external pin that can be used to wake up the system on command.

Complete description of the set-up procedure can be found here.

4. Materials

£ 1. ESP 32
p Ty 2. MQ2
© 3. DHT22 HUMIDITY & TEMPERATURE SENSOR

5 Codes and explanation

/**********************************
* AMC group 5 2022

* Monitoring air quality.

*/

J*RRFHKNKESP3D Wi fi
O T C R A B AR A R A R A R AR A R B8 R R B 2 A R R 8 R B R R B R A R B S AR B R 2 R AR R R A R BB R A R AR R 2 R A R SR AR AR R A R AR R A R AR A R AR AR R AR AR AR AR AR ERAR AR

**************/

#include <WiFi.h> /*wifi
library*/

#include <PubSubClient.h> /*library that

allows you to subscribe and publish mgtt messages*/

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

https://lastminuteengineers.com/esp32-sleep-modes-power-consumption//
https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:here
https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:esp_32
https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:mq2
https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:dht22_humidity_temperature_sensor

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

const char *ssid = ""; /*wifi network
name*/

const char *password = ""; /*WiFi
password*/

/********MOTT

B roke 3 %k sk Kok ok ok S 5k ok ok 5k ok ok ok ok ok S 5 ok ok 5k ok ok 3k ok ok e ok ok ok 5k ok ok 3k ok ok >k ok ok ok 5k ok ok 3k ok ok ok ok ok ok K ok ok ok ok ok o ok ok ok K K ok >k
********************/

“Several topics can be created for each sensor
“connecting to a host and a server

*/

const char *mqtt _broker = "broker.emgx.io"; /*mqtt
broker/server*/

const char *topic up = "/amc2022/group5/up"; /* topic
name*/

//const char *topic DHT22 = "/amc2022/group5/DHT22";

//const char *topic MQ2 = "/amc2022/group5/MQ2"

const char *topic down = "/amc2022/group5/down";

const char *mgtt username = ""; /*add
username 1f needed*/

const char *mgqtt _password = ""; /*add
password if needed*/

const int mqtt _port = 1883; /*mqtt
port*/

/X *¥*¥***Temperature and Humidity
DHT22***

*****/

#include <DHT.h> /*importing
library for DHT sensors*/

#include <DHT U.h>

#define DHTPIN 4 /*connect DHT22
to pin 4 of the esp32*/

#define DHTTYPE DHT22

DHT dht (DHTPIN, DHTTYPE) ; /*calling dht
pin, and dht sensor type from imported libraries*/

[XHFAAAKKTINSTANTIATING A CLIENT TO CONNECT TO THE

SERVER**/

WiFiClient espClient; /*client class: creates a client that can
connect to a specified internet IP address and port.*/
PubSubClient client(espClient); /* creating partially initialized client

https://student-wiki.eolab.de/ Printed on 2026/01/14 02:38

2026/01/14 02:38 9/22 1. Abstract

instance*/

[RFEEFEERMO G G g @k K Kok ok ok ok sk ok ok ok sk ok sk ok ok ok ok ok koo ko ok ko ko ook ko ke sk ko sk ok sk ko sk o
oo KK KKK K KR KKK K KR KKK KRR KKK KKK KKk K/

long lastMsg = 0;
char msg[80]; /* Message buffer size*/
int value = 0;

/***********JSON**
**/

#include <ArduinoJson.h>
DynamicJsonDocument doc(1024); /*allocating memory
pool(for storing data)*/

JXR¥xxxx% Deep sleep for power
saving**

*********/

#define uS TO S FACTOR 1000000 /* Conversion factor
for micro seconds to seconds */

#define TIME TO SLEEP 600 /* Time ESP32 will go

to sleep (in seconds) */
RTC DATA ATTR int bootCount = 0;

int GREEN LED PIN - 33;
int RED_LED PIN - 32;

[RAFFRAAR KA KX X *Defining Battery status
kokokok ok ook sk ok ook sk okofok ok kokokokskokok sk skokokokskok ok ok sk ook ok sk ok kok sk ok ok k sk kok ok sk ok okok sk sk okok sk sk ook sk okofok sk sk okok sk ok okok ok f

#define ADC PIN 34 /*battery pin on esp32*/

#define BATT MAX 5 /*Maximum voltage from power source*/
#define BATT MIN 3.2 /*minimum voltage*/

#define BATT LOW 3.4 /*indicates low, battery needs to be

recharged/ changed*/

[XFFFRR*IRXAXGL 0bals for battery
ST QTS KKKk ok ok sk sk ok ok sk sk ok ok s sk ok ok sk ok ok ok sk sk ok ok ok sk ok ok sk sk ok ok sk sk ok ok ok sk ok ok sk sk ok sk sk sk sk sk ok sk sk ok ok sk ok sk ok sk ok ok ok sk sk ok ok sk ok

*******/

int pinreading; /*define pin on esp32 board*/

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

float bat voltage; /*define battery voltage*/
int batt percentage; /*define battery percentage*/

[FFREER KAk K Ak KRRk kKRR kR * Jafining
MQ2 S NS 0 [** Kk ok kok ko ko sk ok sk ko sk ook ok sk o ok sk ok ok ok sk o ok sk o ok ok ok ok ok ok ok ok ke ok ke sk ke ok e ok o ok
*okk

JRRRARRR kR ok R ok xRk xRk xkdefining other Hardware Related
Ma € ro sk kokskokskokof kokokok sk sk skok ook sk sk sk ko skokosk sk sk skofokokoksk sk sk sk ok kokosk sk sk ok

#define MQ2PIN (36) //define which
analog input channel you are going to use

#define RL VALUE MQ2 (1) //define the load
resistance on the board, in kilo ohms

#define RO CLEAN AIR FACTOR MQ2 (9.577)

//RO_CLEAR AIR FACTOR=(Sensor resistance in clean air)/RO,
//which is derived
from the chart in datasheet

JRARFRFRARA AR Rk xRk xx*Defining Software Related Macros for
qu**/

#define CALIBARAION SAMPLE TIMES (50) //define how many
samples you are going to take in the calibration phase
#define CALIBRATION_SAMPLE INTERVAL (500) //define the time

interval(in 500 millisecond) between each samples in the
//calibration phase

#define READ SAMPLE INTERVAL (50) //define how many
samples you are going to take in normal operation
#define READ SAMPLE TIMES (5) //define the time

interval(in millisecond) between each samples in
//normal operation

/Rl kk ks xxxxdefining Application Related Macros for
qu**/

#define GAS_HYDROGEN (0)

#define GAS LPG (1)

#define GAS METHANE (2)

#define GAS_CARBON_MONOXIDE (3)

#define GAS_ALCOHOL (4)

#define GAS SMOKE (5)

#define GAS PROPANE (6)

#define accuracy (0) //for linearcurves
#define accuracy (1) //for nonlinearcurves,

https://student-wiki.eolab.de/ Printed on 2026/01/14 02:38

2026/01/14 02:38 11/22 1. Abstract

un comment this line and comment the above line if
\\ calculations

//are to be done using
non linear curve equations

/*****************************GlobaZS for
qu***/

float Ro = 0; //Ro is initialized to 10
kilo ohms

void setup() {
Serial.begin(9600); /*sets data in bits per
second(baud) for serial data transmission*/

dht.begin(); /*start dht22 sensor*/

[¥HFAFXCONNECTING

VT B S Rttt 56 b 56 ok 6 60 0 6 e e 590 5 b 96 6 e 5 5 96 S 6 8 55 5 S e 5 8 o S b S
***************************/

WiFi.begin(ssid, password);
while (WiFi.status() !'= WL CONNECTED) {
delay(500);
Serial.println("Connecting to WiFi.."); /*prints on
serial board*/

}
Serial.println("Connected to the WiFi network");

/**** Connecting to a mqtt
broker**

****************/

client.setServer(mqgtt broker, mqtt port); /*setting mqtt
server*/
client.setCallback(callback) ; /*calls function

in response to an event. */

while (!client.connected()) {
String client id = "esp32-client-";
client id += String(WiFi.macAddress());
Serial.printf("The client %s connecting to the public mqtt broker\n",
client id.c str());
it (client.connect(client id.c str(), mqtt username, mqtt password)) {
Serial.println("Public emgx mqtt broker connected"); /*connecting
client*/
} else {
Serial.print("failed with state ");

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

Serial.print(client.state
delay (2000

JRREERRksRk pyblish and
Subscribe***

**********************/

client.publish(topic up, "We are Group 5!!!" /*publishes to mqtt*/

client.subscribe(topic_down /*topic for
subscription*/

delay (2000 /*wait for 2s*/

[FFFAFRIAFNXREADING BATTERY
STATUS 3k 3k ok skt fof ok ok ok ok ok ok sk ok ok ok sk ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok

*****************/

JRFFFFAAARR KA XXX cqglculating battery
voltage***
********/

pinreading = analogRead(ADC PIN

bat voltage float)analogRead (ADC PIN 4095 3.3 © 2.2
/*The equation is calibrated for accuracy*/

Serial.print("value from pin:"

Serial.print(pinreading
Serial.println("voltage:"

Serial.print(bat voltage

JRRRRRRRRCalculating battery
T G 0 220 30 5 B 55 B 5 2 S 2 35 2 S 955 50 S 9S8 308 3 B 2 3 5

kokokokokokok ok kokok ok ok k f
batt percentage uint8 t bat voltage - BATT MIN BATT MAX
BATT MIN 100 /*Equation of percentage based on V*/

1T (batt percentage > 100
batt percentage = 100

if batt percentage 0

https://student-wiki.eolab.de/ Printed on 2026/01/14 02:38

2026/01/14 02:38

13/22

1. Abstract

batt percentage = 0

Serial.println("battery percentage:"

Serial.print(batt percentage

[RFARFARAA AR K AKX XX XMQ2 calibration and reading of

data**/

Serial.print("Calibrating...\n
Ro = MQCalibration(MQ2PIN

sensor. Please make sure the sensor is in clean air

//when you perform the calibration
Serial.print("Calibration is done...\n

Serial.print("Ro="
Serial.print(Ro
Serial.print("kohm"
Serial.print("\n"

Serial.print ("HYDROGEN:"
Serial.print (MQGetGasPercentage
Serial.print("ppm"
Serial.print(" "
Serial.print("LPG:"
Serial.print (MQGetGasPercentage
Serial.print("ppm
Serial.print(" !
Serial.print ("METHANE:"
Serial.print (MQGetGasPercentage
Serial.print("ppm"
Serial.print(" !
Serial.print("CARBON_ MONOXIDE:"
Serial.print (MQGetGasPercentage

Serial.print("ppm"
Serial.print(" .
Serial.print("ALCOHOL:"
Serial.print (MQGetGasPercentage
Serial.print("ppm"
Serial.print(" "
Serial.print("SMOKE:"
Serial.print (MQGetGasPercentage
Serial.print("ppm
Serial.print(" !
Serial.print ("PROPANE:"
Serial.print (MQGetGasPercentage
Serial.print("ppm"
Serial.print("\n"

delay (200

MQRead

MQRead

MQRead

MQRead

MQRead

MQRead

MQRead

MQ2PIN

MQ2PIN

MQ2PIN

MQ2PIN

MQ2PIN

MQ2PIN

MQ2PIN

//Calibrating the

Ro

Ro

Ro

Ro

Ro

Ro

Ro

GAS_HYDROGEN

GAS_LPG

GAS METHANE

GAS CARBON_MONOXIDE

GAS_ALCOHOL

GAS_SMOKE

GAS PROPANE

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

/**** Reading temperature or

humidity**

***********/

float h = dht.readHumidity();
temperature as Celsius (the default)

float t = dht.readTemperature();

temperature as Fahrenheit (isFahrenheit

float f = dht.readTemperature(true);

temperature as Fahrenheit (isFahrenheit

1t (isnan(h) || isnan(t) || isnan(f)) {
Serial.println(F("Failed to read from DHT sensor!"));
reads failed and exit early (to try again).

return;

}

float hif = dht.computeHeatIndex(f, h);

index in Fahrenheit (the default)

true)

true)

float hic = dht.computeHeatIndex(t, h, false);

index in Celsius (isFahreheit = false)

Serial.print(F
Serial.print(h
Serial.print(F("% Temperature: "));
Serial.print(t

Serial.print(F

Serial.print(f

Serial.print(F

Serial.print(h

Serial.print(F("°C "));
Serial.print(hif);
Serial.println(F("°F"));

(
)
(
)
("°C "));
)
("°F Heat index: "));
i

client.loop();

JRFFFFAARRRXXPUHTISh message on MQTT as JSON
3k 3k 3k 5k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k 5k >k 5k 3k 5k 3k 5k >k 3k >k 3k 3k 3k 5k >k 5k >k 5k 3k 5k 3k 3k >k 3k 3k 3k 3k 3k 5k >k 5k >k 3k 3k 5k 3K 3k 3K 3k 5k >k 5k >k 5k >k 5k >k 3k 3k >k 3k >k 5k >k 5k >k 5k >k >k >k >k >k

*okk

long now = millis();
1t ((now - lastMsg) = 5000) {
lastMsg = now;

// Read

// Read

// Read

// Check if any

// Compute heat

// Compute heat

https://student-wiki.eolab.de/

Printed on 2026/01/14 02:38

2026/01/14 02:38 15/22 1. Abstract

doc["Temperature" t

doc["Humidity" h

doc|["Heat Index" hic

doc|"CO" MQGetGasPercentage (MQRead (MQ2PIN Ro
GAS_CARBON_MONOXIDE

doc["Hydrogen" MQGetGasPercentage (MQRead (MQ2PIN Ro, GAS HYDROGEN

doc/["Smoke" MQGetGasPercentage (MQRead (MQ2PIN Ro, GAS SMOKE

doc|"LPG" MQGetGasPercentage (MQRead (MQ2PIN Ro, GAS LPG

doc| "Methane" MQGetGasPercentage (MQRead (MQ2PIN Ro, GAS METHANE

doc["Propane" MQGetGasPercentage (MQRead (MQ2PIN Ro, GAS PROPANE

doc["Alcohol" MQGetGasPercentage (MQRead (MQ2PIN Ro, GAS ALCOHOL

doc|["Battery Status" batt percentage

/**/

J¥FFFAARKKCONVERTING JSON OBIECT TO

BUF FER* % % %k sk sk s ok sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok sk o ok ok ok ok ok ok ook ok ok ok ok ok ok sk o ok ok ok ok ok sk ok ok ok ok ok ok ok ok

kofokskkfok ok koK f

byte buffer|256 //Predefined
number//

size t n = serializeJson(doc, buffer //Collects the

data and converts into JSON
client.publish(topic up, buffer, n, false

Serial.println("Published!" //Publishes data
in JSON form to be accessed online

/********************DEEP SLEEP FOR POWER

S Al AN G R e R R R R e e R e R R e

/

pinMode (GREEN LED PIN, OUTPUT
pinMode (RED LED PIN, OUTPUT
delay (500

bootCount 0) /*Red light blinks only for the first reading while
green light blinks for all other readings*/

digitalWrite(RED LED PIN, HIGH
bootCount bootCount 1

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

digitalWrite(GREEN LED PIN, HIGH

delay (3000

digitalWrite(GREEN_LED PIN, LOW
digitalWrite(RED_LED PIN, LOW

esp32***

***********/

esp sleep enable timer wakeup(TIME TO SLEEP * uS TO S FACTOR
esp _deep sleep start

/*****************CALLBACK
L I 58 B s A e B A R e R R A B B B R R A 3 A R R 3 R R 3 S A B AR S R AR S R B R A3 S A B AR S R B R R R B RS S A R AR S AR A R R R ERARER

o KK KKK KK KKK K KKK

/X¥*¥*xxx The mqtt client calls a callback method on seperate thread to main
application thread_**************************/

void callback(char “topic, byte *“payload, unsigned int length
Serial.print("Message arrived in topic: "
Serial.println(topic
Serial.print("Message:"
for (int i = 0; i < length; 1
Serial.print((char) payload|i

Serial.println
Serial.println("----------cmommommmnann-

void loop /*left blank, to save battery. Since
after each reading, the esp32 restarts*/

/R ookskkokok M2 Resistance Calculation
3K 3K 3K 5K 3K 3K 5K 3k 3K >k >k >k >k >k >k >k >k >k K K K 5k 5k 5Kk 5Kk 5K 5K 5K 5K 5K 5K 5K 5K 5K 5K 5K >k >k >k >k >k >k 5k 5k 3k K >k > 5k > 5Kk >k 5Kk 5Kk 5K 5K 5K 5K 5K 5K 5K 5K 5K kK kK kK kK %k k)k k %k

https://student-wiki.eolab.de/ Printed on 2026/01/14 02:38

2026/01/14 02:38 17/22 1. Abstract

Input: raw_adc - raw value read from adc, which represents the voltage
Output: the calculated sensor resistance
Remarks: The sensor and the load resistor forms a voltage divider. Given
the voltage
across the load resistor and its resistance, the resistance of the
sensor
could be derived.

3k 5K >k 5k 3k 5k >k 5k >k 5k >k >k >k >k 5k >k 5k >k 5k >k 5k >k 5k >k >k >k >k 5k >k 5k >k 5k >k >k >k >k >k >k >k >k 5k >k 5k >k 5k >k >k >k >k >k >k >k >k >k >k 5k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k %k
********/

float MQResistanceCalculation(int raw_adc)
{
return (((float)RL_VALUE MQ2 * (1023 - raw_adc) / raw_adc));

}

JRFEFRE KRR KRR KRR KRR Rk MOCalibration
sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok

Input: mq pin - analog channel
Output: Ro of the sensor
Remarks: This function assumes that the sensor is in clean air. It use
MQResistanceCalculation to calculates the sensor resistance in
clean air
and then divides it with RO CLEAN AIR FACTOR. RO CLEAN AIR FACTOR
is about
10, which differs slightly between different sensors.

sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok k %k %k
oo KK KKK K KR KKK KK KR KKK K KR KKK K KR KKK KKK KKk /

float MQCalibration(int mq pin)
{

int 1i;

float RS AIR val = 0, r0;

for (i = 0; 1 < CALIBARAION SAMPLE TIMES; i++) { //take
multiple samples
RS AIR val += MQResistanceCalculation(analogRead(mq pin));
delay (CALIBRATION SAMPLE INTERVAL) ;
¥
RS _AIR val = RS _AIR val / CALIBARAION SAMPLE TIMES; //calculate
the average value

ro = RS _AIR val / RO _CLEAN AIR FACTOR MQ2;
//RS AIR val divided by RO CLEAN AIR FACTOR yields the Ro
//according
to the chart in the datasheet

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

ro

/***************************** MORead
3K 5K 3k 5K >k 5k >k 5k >k 5Kk >k 5k >k >k 5K >k 5k >k 5k >k 5k >k 5k >k >k 5k >k 5k >k 5k >k 5k >k 5k >k 5k >k >k >k >k 5k >k 5k >k 5k >k 5k >k >k >k >k >k >k 5k >k 5k >k

Kok KK KKK

Input mg_pin analog channel
Output Rs of the sensor
Remarks: This function use MQResistanceCalculation to caculate the sensor
resistenc (Rs
The Rs changes as the sensor is in the different consentration of
the target
gas. The sample times and the time interval between samples could
be configured

by changing the definition of the macros.
/***

oo KKK KK KK KK KoK R K KKK K KK oK K KKK KK KRR KKK

float MQRead(int mqg pin

int i
float rs 0

i = 0; i < READ SAMPLE TIMES; i
rs MQResistanceCalculation(analogRead(mq pin
delay (READ SAMPLE INTERVAL

rs rs / READ SAMPLE TIMES

rs

/***************************** MO Get Gas Percentage
***/

Input rs ro ratio - Rs divided by Ro
gas_id target gas type
Output ppm of the target gas
Remarks: This function uses different equations representing curves of
each gas to

calculate the ppm (parts per million) of the target gas.
/***

***/

/***********************CalCUlations**
**/

https://student-wiki.eolab.de/ Printed on 2026/01/14 02:38

http://www.opengroup.org/onlinepubs/009695399/functions/time.html

2026/01/14 02:38

19/22

1. Abstract

int MQGetGasPercentage(float rs ro ratio

accuracy

gas id

pow

GAS _HYDROGEN

loglO(rs ro ratio

int gas_id

1.41

//Numbers obtained from the Table 1 on MQ2 page

gas_id
pow

gas id
pow

gas_id
pow

gas_id
pow

gas id
pow

gas_id
pow

daCcuracy

gas_id

pow

GAS LPG

loglO(rs ro ratio
GAS METHANE
loglO(rs ro ratio

1.425

1.34

GAS CARBON_MONOXIDE

loglO(rs ro ratio
GAS_ALCOHOL
loglO(rs ro ratio
GAS_SMOKE

loglO(rs ro ratio
GAS PROPANE
loglO(rs ro ratio

GAS_HYDROGEN

loglO(rs ro ratio

1.51

1.31

1.601

1.29

1.41

//Numbers obtained from Table 1 on MQ2 description

6. Results

Serialboard

gas id
pow

gas_id
pow

gas_id
pow

gas id
pow

gas_id
pow

gas_id
pow

GAS LPG

loglO(rs ro ratio
GAS METHANE
loglO(rs ro ratio

1.425

1.34

GAS CARBON_MONOXIDE

loglO(rs _ro ratio
GAS_ALCOHOL
loglO(rs ro ratio
GAS_SMOKE

loglO(rs ro ratio
GAS_PROPANE
loglO(rs ro ratio

1.51

1.31

l.01

1.29

0.47

0.45

0.37

0.34

0.37

0.44

0.46

0.47

0.45

0.37

0.34

0.37

0.44

0.46

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/log10.html

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

‘a0 {dewiou.ushserial-0001
Send

§ T*% VE 4l%Connecting to WiFi.

Lornected to the WiFi network

Mhe client espI2-client-7B:20:84:FE:2C:40 conmeoting to the public stk broker
Public emge mate Broker conedted

walue from pin: 297 vel tage

5. 2Thatiery percentoge:

1Calibrating. . .

Lalibravion is done. ..

Bl Blkicirm

HTDRDGEY : 4ppm LG ippe HETHANE - Ippm CARBOH_MINTILDE : Hppn ALOOMOL : 2pom SM0iE - Sppr PRCGFUHE : Ippm
Mridicy: 75.08% Terperoturs: 26.20°C 79.16°F Heot index: 27.55°C 82.12°F
b ished!

TSRS F3T gy Tleerecting te WiFiQ

Tormacted to the WiFL natwork

Tha clignt esp3Z-client-FR:Z1:84.7E: 3040 conmecting to the public mgek Brokaer
Public oegx it broker connected

£ Autoscroll Showw timestamp Nawling (2] 600 bawd (2] Cloar aungut

4

figure #

Grafana

-

figure # Measurement result of DHT22 and MQ2 sensors visualised on grafana

7. Conclusion

https://student-wiki.eolab.de/ Printed on 2026/01/14 02:38

https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agrouph%3Astart&media=amc2022:grouph:serialboard.jpg
https://student-wiki.eolab.de/lib/exe/detail.php?id=amc2022%3Agrouph%3Astart&media=amc2022:grouph:group_5_-_grafana.jpg

2026/01/14 02:38 21/22 1. Abstract

8. Discussion

For discussion we want to talk about two things, one is how we can improve our device and the
second is what issues are presented during the current set-up and how it affects its performance.

To start we are going to look at the current issues. Due to the idea of having a system that is easy to
set up and needs as little investment as possible, we have opted for the exclusion of parts that could
in the future aid in the performance of the device for both battery consumption and accuracy in the
data registered. The main issue comes from the utilization of the 9V battery provided in the ELEGOO
kit. That specific battery doesn’t hold a large charge. For the 6F22 which is the model of our battery,
meaning that is based on Zinc-Carbon material, the average capacity is limited to about 400mAh.
Additionally they are not suitable for recharging and the efficiency and durability is highly influenced
by ambient temperature. Moreover, because the voltage is higher than the required by the ESP-32
microcontroller, it means that we can either use the internal resistor of the microcontroller or an
external linear regulator or a switcher, however for any of these options there is going to be loss of
energy in the form of heat produced by the resistance. What we would like is to have is a
rechargeable battery that holds more power and is set up to provide 3.3 to 3.7V. In addition the
inclusion of a PV module, which will recharge the battery, however still the main purpose of the device
is to measure the air quality of enclosed spaces, therefore consideration must be put into the
installation and placement of the PV module, and whether it makes sense to use it or not. High quality
sensors are available that can not only measure specific compounds but will yield better results. One
which would be good to add to our device would be the MQ-131 Ozone sensor. Ozone is produced by
multiple household products, such as steamers, air purifiers and ultraviolet lamps. The indication of
high levels of Ozone in a confined space could cause a health hazard for anyone within that space.
The price of the sensor is $38 on amazon.com. That highly elevates the overall cost of the project and
was deemed not suitable.

Issues with the current set-up are based on the components and its limitations. For example the MQ-2
sensor needs to be active and heat up for a period of 24 hours before the reading to increase its
accuracy. Due to its requirements, power consumption is increased. Additionally, the calibration of the
device is undefined, meaning that It can be adjusted individually to meet specific requirements. The
use of RTC memory to reduce WiFi connections is an option that has two effects. One is the reduction
of power consumption due to the sending of information in bulk packages and the other is the
inability to obtain information due to the lapse time between connections. RTC memory is used to
store information during Deep Sleep mode. Since the main memory of the microcontroller is wiped
when it goes to sleep, the sensors can instead take the readings and the data is stored on the RTC
without the need of doing one reading followed by one WiFi transmission. For example if we set up
the device to do 10 readings per hour, instead of connecting the device to the WiFi 10 times to
transmit the data, it can instead connect only once every hour and send the 10 readings in one
package. That would considerably reduce the power consumption, however, if as in the previous
example we would have the opportunity of having more up to date information, every 10 minutes of
the Air Quality, alternatively we would have to wait an hour to know what were the readings during
that time. Since we opted for a system that gives you the latest information we avoided using RTC
memory.

9. Video Explanation

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Last update: 2023/01/05 14:38 amc2022:grouph:start https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

amc_lq_group_5.mp4

10. References

Measuring the Temperature, Humidity, smoke, Carbon Monoxide(CO), and Liquified petroleum
gas(LPG) in the air.

Bogdan, Mihai. (2016). How to Use the DHT22 Sensor for Measuring Temperature and Humidity with
the Arduino Board. ACTA Universitatis Cibiniensis. 68. 10.1515/aucts-2016-0005.

1)

World Health Organization. https://www.who.int/health-topics/air-pollution#tab=tab 1

2)

https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
3)

https://microcontrollerslab.com/adc-esp32-measuring-voltage-example/

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

Last update: 2023/01/05 14:38

https://student-wiki.eolab.de/ Printed on 2026/01/14 02:38

https://student-wiki.eolab.de/lib/exe/fetch.php?cache=&media=amc2022:grouph:amc_lq_group_5.mp4
https://www.who.int/health-topics/air-pollution#tab=tab_1
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
https://microcontrollerslab.com/adc-esp32-measuring-voltage-example/
https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=amc2022:grouph:start&rev=1662766817

	[1. Abstract]
	1. Abstract
	2. Introduction
	3. Method
	3.1 Temperature and Humidity Measurement
	3.2 Air Particles Measurement
	3.3 MQTT Database and WiFi Connection
	MQTTX
	Node Red
	3.4 Battery Voltage Measurement
	3.5 Deep Sleep Mode and Power Saving

	4. Materials
	5 Codes and explanation
	6. Results
	Serialboard
	Grafana

	7. Conclusion
	8. Discussion
	9. Video Explanation
	10. References

