
2026/01/14 16:27 1/2 Docker

HSRW EOLab Students Wiki - https://student-wiki.eolab.de/

Docker

Bei Docker handelt es sich um ein open-source (Apache 2.0 Lizenz) System um sogenannte Container
zu betreiben und zu verwalten. Dies dient im besonderen dazu Code effizient in kurzer Zeit auf
diversen Systemen lauffähig zu machen. (Turnbull, 2019, S.7-8) So hilft Docker eine Applikation von
der Infrastruktur zu separieren und so zu isolieren (Docker Inc., o.J.a).

Funktionsweise und Unterschied zu virtuellen Maschinen

Das Docker-System besteht aus drei essentiellen Teilen:

Docker Images
Docker Container
Docker Engine

Die Docker Images sind die Bauanleitung für die Docker Container. Die Images enthalten dabei eine
Schritt für Schritt-Anleitung, wie ein Container generiert beziehungsweise aufgebaut werden muss. Als
Beispiel nennt Turnbull:

Füge eine Datei hinzu.1.
Führe einen Befehl aus.2.
Öffne einen Port.3.

Wie zusehen ist, sind diese Images sehr trivial aufgebaut. Das macht es besonders einfach sie zu
teilen und zu modifizieren. (Turnbull, 2019, S.12) Ein weiterer Vorteil der Images ist es, dass sie
aufeinander basieren können. So ist es beispielsweise möglich ein eigenes Image zu erstellen welches
auf dem Image von Ubuntu basiert. So ein Image wird dann in einer Dockerfile erstellt. Jeder weitere
hinzugefügte Befehl wird als eine neue Ebene gesehen. Ein Vorteil welcher Docker von anderen
Container-Systemen unterscheidet ist, dass Docker ein Image nicht komplett neu baut, wenn in der
Dockerfile sich eine Ebene verändert. Es werden lediglich die veränderten Ebenen erneuert. Das
macht, laut Docker Inc., die Images so klein und schnell. Die meisten der allgemein bekannten Docker
Images werden in Registries veröffentlicht, wo sie für jeden zur Verfügung stehen. Eine der
bekanntesten Registries ist Docker Hub. (Docker Inc., o.J.a) Die Docker Container werden zur Laufzeit
von der Docker Engine mit Hilfe der Docker Images generiert. Da Docker Container standardisiert
sind, sind sie mit anderen Container Umgebungen kompatibel. (Docker Inc., o.J.b) Auch das macht sie
sehr portable. Dies wird auch dadurch gefördert, dass die Container selber kein eigenes
Betriebssystem und Kernel umfassen, da dies mit dem Host-System geteilt wird. Dies ist auch
gleichzeitg einer der großen Unterschiede zu virtuellen Maschinen. Ein Container beinhaltet lediglich
die Anwendung und deren Abhängigkeiten. So ist es auch möglich mehrere Container auf einem Host
zu betreiben, wobei diese stets von einander isoliert sind. Virtuelle Maschinen hingegen sind zwar
auch von einander isoliert, aber sie eignen sich besser dazu, physikalisch Hardware zu emulieren.
Dafür enthält jede virtuelle Maschine ein eigenes Betriebssystem inklusive Kernel. Das macht sie
deutlich ressourcenintensiver in der Bereitstellung, was sich auch auf die Perfomance negativ
auswirkt. (Rad, Bhatti & Ahmadi, 2017) Auch wenn die Container isoliert vom Host-Betriebssystem
arbeiten, bietet Docker die Möglichkeit, gewisse Teile des Containers zu öffnen und so eine einfachere
Kommunikation zwischen Container und Host-Betriebssystem zu ermöglichen. Beispielsweise können
Ports für einen Container freigegeben werden. Dies ist möglich, da jeder Container eine eigene
Netzwerkschnittstelle besitzt. Die Docker Engine (später mehr dazu) kann diesen Port dann für das



Last update: 2023/01/05 14:38 user:jan001:ba:docker https://student-wiki.eolab.de/doku.php?id=user:jan001:ba:docker&rev=1612887201

https://student-wiki.eolab.de/ Printed on 2026/01/14 16:27

Host-Betriebssystem auf einen anderen Port umleiten. Dies ermöglicht zum Beispiel zehn Container
mit einer Anwendung die Port 80 verwendet zu betreiben und für das Host-Betriebssystem sind es
dann die Ports 42001, 42002 und so weiter. Jeder Container hat dann nach außen hin einen eigenen
Port. In ihrem Container benutzt die Anwendung aber immer den selben Port. (Anderson, 2015,
S.104f) Auch können für Docker Container sogenannte Volumes eingerichtet werden. Dies ist ein
persistener Speicher für Daten, welcher nicht zwingend an einen Container gebunden sein muss. Auf
diesen Speicher können sowohl mehrere Container als auch das Host-Betriebssystem direkt zu
greifen. Dies wird häufig beispielsweise genutzt um Quellcode in den Container zu bekommen ohne
das Image zu verändern oder um Ereignisprotokolle auch außerhalb des Containers verfügbar zu
machen. Auch diese Funktion wird durch die Docker Engine ermöglicht. (Turnbull, 2019, S.113) Die
Docker Engine, auch bekannt als Docker Daemon, und stellt im Docker System quasi den Verwalter
dar. Die Engine wird über eine RestAPI gesteuert. So können Images, Container, Netzwerke und
Volumen verwaltet werden. Sie steuert auch die Kommunikation zwischen den laufenden Docker
Container und dem Host-Betriebssystem. Dazu zählen beispielsweise die Verteilung von
Systemressourcen und der Zugriff auf Basisfunktionalität des Host-Betriebssystems. (Docker Inc.,
o.J.a)

Oftmals besteht eine Applikation nicht nur aus einer Anwendung. So können Webapplikationen
beispielsweise einen Backend-Webserver und dazu noch eine oder mehrere Datenbanken enthalten.
Dafür können natürlich mehrere Container einzeln über die Kommandozeile mit Hilfe der Docker
Engine angelegt und verwaltet werden. Dies ist aber sehr aufwändig und auch schlecht replizierbar.
Genau für solche Einsatzzwecke wurde das Tool Docker-Compose entwickelt. Docker-Compose
ermöglicht es in einer Datei alle Services (eine Konfiguration eines Containers), Volumen, Netzwerke
und Abhängigkeiten zu definieren. Diese Datei kann dann einfach und schnell geteilt werden, um eine
Applikation in einer Entwicklungs-, aber auch in einer Produktionsumgebung lauffähig zu machen.
Dabei können beispielsweise Portumleitungen oder Umgebungsvariablen schnell geändert werden,
um die Applikation ihrer Umgebung anzupassen. (Smith, 2017)

Einsatzgebiete

From:
https://student-wiki.eolab.de/ - HSRW EOLab Students Wiki

Permanent link:
https://student-wiki.eolab.de/doku.php?id=user:jan001:ba:docker&rev=1612887201

Last update: 2023/01/05 14:38

https://student-wiki.eolab.de/
https://student-wiki.eolab.de/doku.php?id=user:jan001:ba:docker&rev=1612887201

	Docker
	Funktionsweise und Unterschied zu virtuellen Maschinen
	Einsatzgebiete


