

NFC – A Closer Look

May 16th, 2016

Presenters:

Matt Rose – NFC Business Development Manager Jon Kurtz – NFC Engineering Specialist

AGENDA

NFC: What is involved?

Readers Tags Antennas

Compliance Software **Design Considerations** **Product Solutions:** Readers

> **NTAG Smart Labels**

What is RFID?

- Radio Frequency IDentification
- Method for exchanging data between two objects
 - An active device such as a reader/writer and a passive device such as a tag
- Used in various applications to identify large numbers of objects.
 - Retail product identification
 - Asset tracking
 - Parts identification
 - Livestock identification
- In 2014, RFID market was worth \$8.89 billion. Market value expected to rise to \$27.31 billion by 2024.
- Implemented in various frequency bands based on application requirements.

Band		Range	Data Speed
120-150 kHz	LF	1-2 m	low
13.56 MHz	HF	10 cm/1m	low to moderate
433 MHz	UHF	1-100 m	moderate
865-900	UHF	1-12 m	moderate to high
24500-5800 HMz	SHF	1-2 m	high

What is NFC?

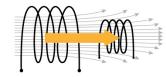
- Near Field Communication
- It is a subset of RFID defined by specific ISO standards
- Frequency of operation is at ISM band of 13.56 MHz
- Maximum range is 10 cm
- Data throughput: 106, 212, 424 or 848 kbps
- Defined by ISO 18092 but compatible with older ISO 14443
- The recognized standard for contactless payment via smart phones

Helicon
Double
Layer ion
thruster

13.56 MHz most commonly used for RF plasma processes

13.56 MHz / 128 = 105.94 kHz

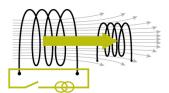
NFC: How is data transmitted?


Passive communication scheme

Read/write, Passive Peer to Peer and Card Emulation Modes

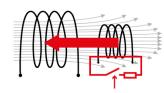
1. The initiator generates the RF field

The RF field is used for data exchange. The initiator and target are both powered internally.



2. The initiator sends commands

The initiator modulates the RF field to send commands.

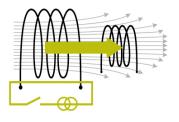


3. The target responds

The target uses backward modulation to transmit the response.

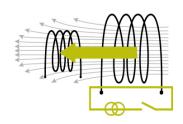
NFC: How is data transmitted?

Active Communication Scheme


Active Peer to Peer Mode

1. The initiator sends commands

The initiator generates an RF field, sends commands, and then cuts the field.



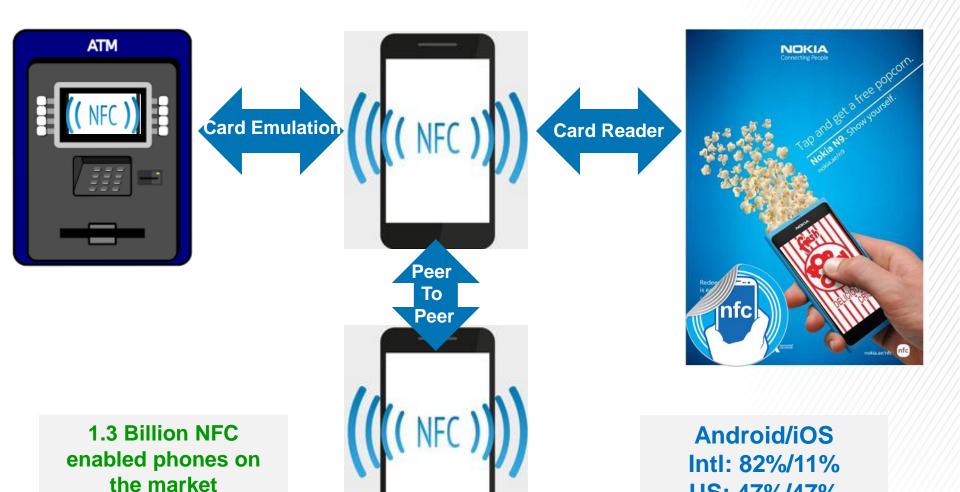
2. The target responds

Once the initiator cuts its RF field, the target generates its own field and uses it to transmit responses.

System Design Considerations

Mode(s) of operation

Protocol Support


Selecting a reader

Antenna Design and Tuning

Software Integration

NFC: Modes of Operation

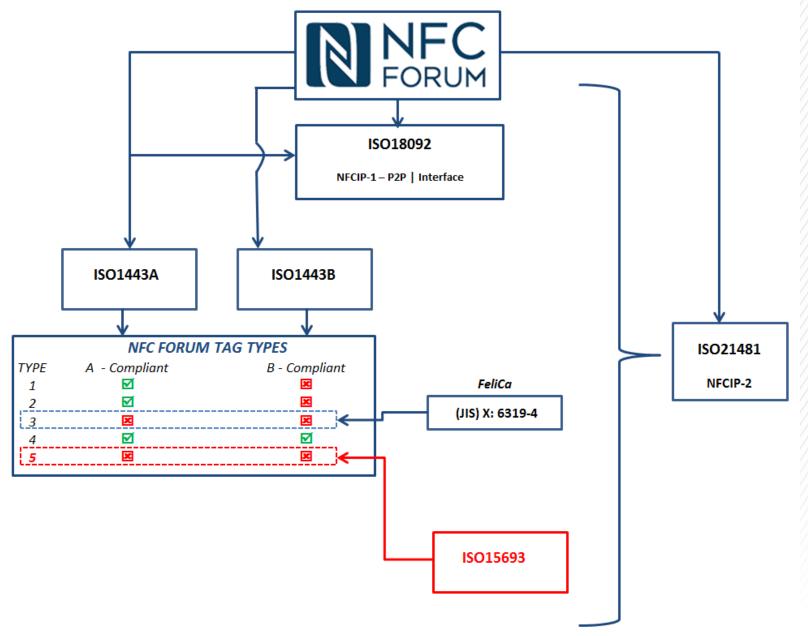
US: 47%/47%

13.56MHz Related Standards

ISO18092

ISO15693

ISO14443A


ISO14443B

(JIS) X - 6319-4

ISO7816-4

ISO21481

Example – NFC Forum Compliant Reader

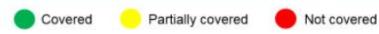
PN7120

Full NFC Forum-compliant controller with integrated firmware and NCI interface

Rev. 3.1 — 8 October 2015 312431 Product data sheet COMPANY PUBLIC

3. Features and benefits

- Includes NXP ISO/IEC14443-A, Innovatron ISO/IEC14443-B and NXP MIFARE Crypto 1 intellectual property <u>licensing rights</u>
- ARM Cortex-M0 microcontroller core
- Highly integrated demodulator and decoder
- Buffered output drivers to connect an antenna with minimum number of external components
- Integrated RF level detector
- Integrated Polling Loop for automatic device discovery
- RF protocols supported
 - NFCIP-1, NFCIP-2 protocol (see Ref. 7 and Ref. 10)
 - ◆ ISO/IEC 14443A, ISO/IEC 14443B PICC mode via host interface (see Ref. 2)
 - ISO/IEC 14443A, ISO/IEC 14443B PCD designed according to NFC Forum digital protocol T4T platform and ISO-DEP (see Ref. 11)
 - FeliCa PCD mode
 - ◆ MIFARE PCD encryption mechanism (MIFARE 1K/4K)
 - NFC Forum tag 1 to 4 (MIFARE Ultralight, Jewel, Open FeliCa tag, DESFire) (see Ref. 11)
 - ISO/IEC 15693/ICODE VCD mode (see <u>Ref. 8</u>)
- Supported host interfaces
 - ◆ NCI protocol interface according to NFC Forum standardization (see Ref. 1)
 - ◆ I²C-bus High-speed mode (see Ref. 3)


PN7120-NCI Cont'd.

NFC controller interface (NCI)

NXP NCI extension

- NCI interface as defined by the NFC Forum does not give access to the entire functionality set.
- NXP extends NCI interface with a proprietary extension.

Features	NCI	PN7120 - NCI
RF Discovery activity (NFC Forum, EMVCo)		•
Reader/Writer ISO-DEP for NFC-A & NFC-B, T1T, T2T, T3T, T4T		•
Reader/Writer MIFARE Classic, MIFARE Plus, ISO15693, Kovio		
Card Emulation ISO-DEP for NFC-A & NFC-B		
P2P passive (Initiator & Target)		•
P2P active (Initiator & Target)		
RF bit rates for Listen mode & Poll mode: 106 Kbps (NFC-A & NFC-B), 212 Kbps (NFC-F), 424 Kbps (NFC-F)	•	•
RF bit rates for Listen mode & Poll mode in technology NFC-A & NFC-B: 212 Kbps, 424 Kbps, 848 Kbps	•	•
Configuration: Power management, RF settings, clocking schemes		
Others: Presence check	•	•

Reader Selection

Steps to design a contactless reader

Selection of contactless reader IC Which transponder do we need to interact with?

- Support of various RF standards
 - Dedicated use case & application may support only ISO/IEC 14443-A
 - Open application needs to support various RF standards such as ISO/IEC14443 A&B, ISO/IEC 15693
- Application specific requirements
 - EMVCo -> payments
 - NFC Forum -> Full NFC support on P2P and R&W
- Power consumption
 - Handheld contactless reader will require low energy consumption
- Selection of the host interface
 - SPI, I²C, RS232, UART ..
- Specific features
 - · Specific data rates, timing and reading distance

Reader Security Architecture

Steps to design a contactless reader

1

Selection of contactless reader IC Which transponder do we need to interact with?

- 2
- Selection of **Host**The brain and heart of our contactless reader
- 3

Selection of **security** architecture SAM or Host for key storage

Host / MCU

- Microcontrollers are not designed and developed to securely store and maintain cryptographic keys since they don't offer reliable protection and security mechanisms
- They do not widely implement HW-based crypto-processors, so the execution of these crypto algorithms is not efficient

► SAM

- It is a tamper-resistant chip that provides secure execution and secure key storage functions to the reader side
- It carries HW based cryptography that allows one to perform complex cryptographic operations efficiently
- SAM X-interface: It supports the X-mode, which allows a fast and convenient contactless terminal development by connecting the SAM to the microcontroller and reader IC simultaneously.

NXP NFC Reader Solutions

Part Number	CLRC663	MFRC631	MFRC630	<u>SLRC610</u>	MFRC523	MFRC522	PN5180	PN7462	PN7120	PR601	PRH601
								Integrated MCU	Integrated MCU	(CLRC663 + MCU)	(CLRC663+ LPC1227+ HITAG)
Standards & Protocols											
	ISO/IEC 14443 A and B ISO/IEC 18092 ISO/IEC15693 ISO/IEC 18000-3 mode 3 Felica Mifare NFCIP-1 EMVCo	Mifare EMVCo	Mifare	ISO/IEC 18000-3 mode 3 ICODE EPC UID/ EPC OTP	A and B Mifare EMVCo	ISO/IEC 14443 A Mifare	ISO/IEC 14443 A and B ISO/IEC 15693 ISO/IEC 18000- 3M3 ISO/IEC 18092 ISO/IEC 21481 Mifare ICODE Felica EMVCO NFC Forum	ISO/IEC 14443 A and B ISO/IEC 15693 ISO/IEC 18000- 3M3 ISO/IEC 18092 ISO/IEC 21481 Mifare ICODE Felica EMVCo NFC Forum	and B ISO/IEC 18092 ISO/IEC15693 Felica Mifare NFCIP-1 NCIP-2 EMVCo	B ISO/IEC 18092 ISO/IEC15693 Felica Mifare NFCIP-1 EMVCo	ISO/IEC 14443 A and B ISO/IEC 18092 ISO/IEC15693 Felica HITAG EMVCo
Mode of communication	Reader/Writer P2P: Passive Intiator	Reader/Writer	Reader/Writer	Reader/Writer	Reader/Writer	Reader/Writer	Reader/Writer P2P: active + passive intiator/target Card emulation	Reader/Writer P2P: active + passive intiator/target Card emulation	Reader/Writer P2P: active + passive intiator/target Card Emulation	Reader/Writer, P2P: Passive Intiator	Reader/Writer, P2P: Passive Intiator
NFC Forum Tag type support	1, 2, 3, 4, 5	1, 2 , 4	1, 2 , 4	5	1, 2 , 4	1, 2 , 4	1, 2, 3, 4, 5	1, 2, 3, 4, 5	1, 2, 3, 4, 5	1, 2, 3, 4, 5	1, 2, 3, 4, 5
Datarate (kbps)	848	848	848	26.48	848	848	848	848	848	848	848
		0.0	040	20.40	040	040	040	040	040	040	/////048/////
Product Features		0.0	040	20.48	040	040	040	848	040	040	040
Product Features Host Interface	SPI, I2C, UART	SPI, I2C, UART	SPI, I2C, UART	SPI, I2C, UART			SPI	SPI, I2C, USB,	12C	SPI, I2C, UART	SPI, I2C, UART
Host Interface	SPI, I2C, UART	SPI, I2C, UART	SPI, I2C, UART	SPI, I2C, UART	SPI, I2C, UART	SPI, I2C, UART	SPI	SPI, I2C, USB, HSUART	I2C	SPI, I2C, UART	SPI, I2C, UART
Host Interface Max Output power (mW) Package	SPI, I2C, UART 1125	SPI, I2C, UART 1125	SPI, I2C, UART 1125	SPI, I2C, UART	SPI, I2C, UART 200	SPI, I2C, UART	SPI 1250	SPI, I2C, USB, HSUART 1050	12C 500	SPI, I2C, UART 1500	SPI, 12C, UART 2000
Host Interface Max Output power (mW)	SPI, I2C, UART 1125 QFN-32	SPI, I2C, UART 1125 QFN-32	SPI, I2C, UART 1125 QFN-32	SPI, I2C, UART 1125 QFN-32	SPI, I2C, UART 200 QFN-32	SPI, I2C, UART 200 QFN-32	SPI 1250 QFN-40, TFBGA64	SPI, I2C, USB, HSUART 1050 QFN-64	12C 500 VFBGA49	SPI, I2C, UART 1500 LQFP100	SPI, I2C, UART 2000 LQFP100
Host Interface Max Output power (mW) Package Microcontroller	SPI, I2C, UART 1125 QFN-32 host needed	SPI, I2C, UART 1125 QFN-32 host needed	SPI, I2C, UART 1125 QFN-32 host needed	SPI, I2C, UART 1125 QFN-32 host needed	SPI, I2C, UART 200 QFN-32 host needed	SPI, I2C, UART 200 QFN-32 host needed	SPI 1250 QFN-40, TFBGA64 host needed	SPI, I2C, USB, HSUART 1050 QFN-64 ARM Cortex M0	I2C 500 VFBGA49 ARM Cortex M0	SPI, I2C, UART 1500 LQFP100 ARM Cortex M0	SPI, I2C, UART 2000 LQFP100 ARM Cortex M0
Host Interface Max Output power (mW) Package Microcontroller Distance Prox/Vic (cm)	SPI, I2C, UART 1125 QFN-32 host needed 12	SPI, I2C, UART 1125 QFN-32 host needed 12	SPI, I2C, UART 1125 QFN-32 host needed 12	SPI, I2C, UART 1125 QFN-32 host needed 16	SPI, I2C, UART 200 QFN-32 host needed 5 -25 to +85 Yes, Mifare	SPI, I2C, UART 200 QFN-32 host needed 5 -25 to +85	SPI 1250 QFN-40, TFBGA64 host needed 12 -30 to +85 Yes, Mifare Classic	SPI, I2C, USB, HSUART 1050 QFN-64 ARM Cortex M0 12 -40 to + 85	12C 500 VFBGA49 ARM Cortex M0 7 -30 to + 85	SPI, I2C, UART 1500 LQFP100 ARM Cortex M0 16	SPI, I2C, UART 2000 LQFP100 ARM Cortex M0 16 -25 to + 70

NFC Forum tags

Standard TAG types

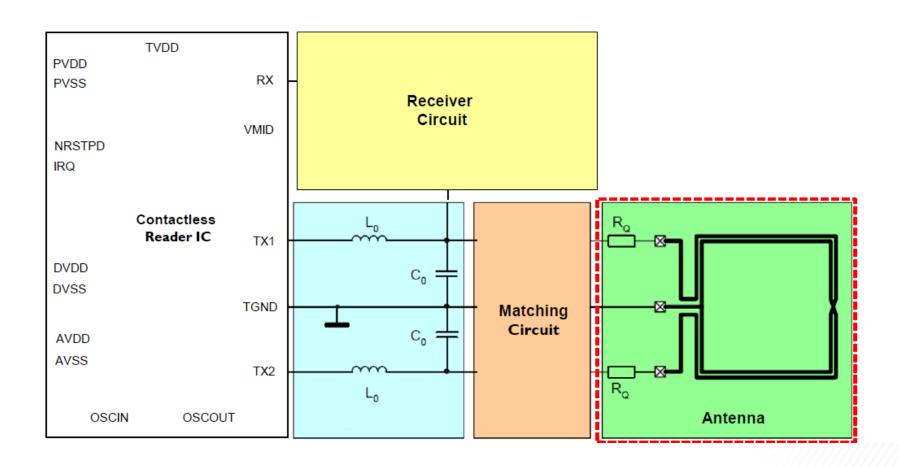
NFC Forum introduced standardized technology architecture, initial specifications and

tag formats for NFC compliant devices:

1. NFC Forum Data Exchange Format (NDEF), defines a message encapsulation format to exchange information

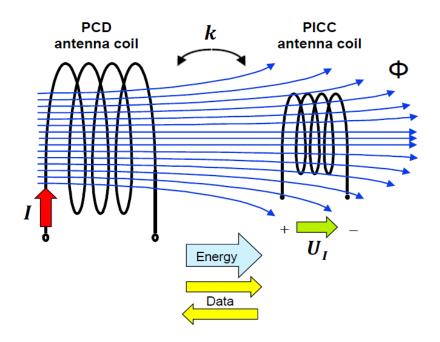
2. Record Type Definition The RTD specification provides a way to efficiently define record formats for new applications and gives users the opportunity to create their own applications based on NFC Forum specifications of TEXT, URI, Smart Poster, and Generic Control.

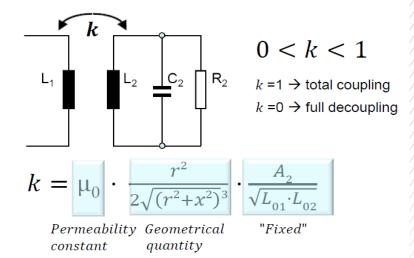
Tag Type	Description
Tag 1 Type	Read, re-writeable. Users can configure tag to be read-only. Based on ISO14443A Standard Memory: 96 to 2k bytes Data throughput: 106 kpbs
Tag 2 Type	Read, re-writeable. Users can configure tag to be read-only. Based on ISO14443A Standard Memory: 48 to 2k bytes Data throughput: 106 kpbs
Tag 3 Type	Based on Sony standard FeliCa Memory: up to 1M bytes Data throughput: 212 kbps
Tag 4 Type	Read, re-writeable or read-only Based on ISO14443A and B standard Memory: up to 32K bytes Data throughput: 106 and 424 kbps
Tag 5 Type	Read, re-writeable or read only Based on ISO15693 ICODE Memory up to 2528bits Data throughput: Max 53 kbps


http://members.nfc-forum.org/specs/spec_list/

MIFARE

- MIFARE is NXP's well-known brand for a wide range of contactless IC products.
- Typical read/write distance of 10 cm (4 inch)
- Used in more than 40 different types of application worldwide.
 - Electronic ticketing, Road tolling, Airline tickets, Access control for events, Student cards, NFC tags
- 50 million reader and 5 billion card components sold,
 - MIFARE products are proven and more reliable than any other interface technology in the market.
- MIFARE Smart Card IC range :
 - 1. MIFARE Ultralight primarily used for contactless automatic fare collection systems
 - 2. MIFARE Classic the original, first product to fit into an ISO contactless smart card
 - 3. MIFARE DesFire- ideal for transport schemes, identity applications
 - 4. MIFARE Plus security and performance for cost sensitive automated fare collection, access control markets
- MIFARE Reader IC range:
 - 1. Part of the NFC Frontend solutions: MFRC522, MFRC523, MFRC631, MFRC630





NFC antenna: Transformer principle

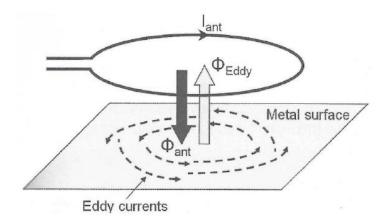
Coupling coefficient

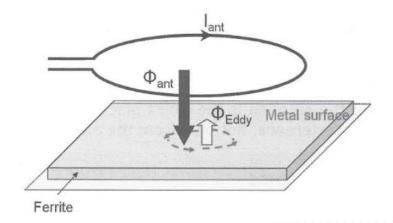
- The coupling coefficient depends on:
 - The geometric dimensions of both conductor loops.
 - The position of the conductor loops in relation to each other
 - The magnetic properties of the medium (μ₀)

Optimum antenna size

- ► For every read range *x* of an NFC system, there is an optimal antenna radius *R*.
- ▶ A rough approximation is that :

$$k = \mu_0 \cdot \frac{r^2}{2\sqrt{(r^2 + x^2)^3}} \cdot \frac{A_2}{\sqrt{L_{01} \cdot L_{02}}}$$

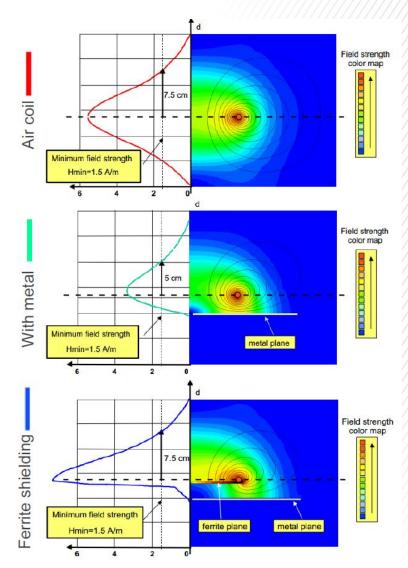

$$r = x$$


Metal environment influences

Eddy currents

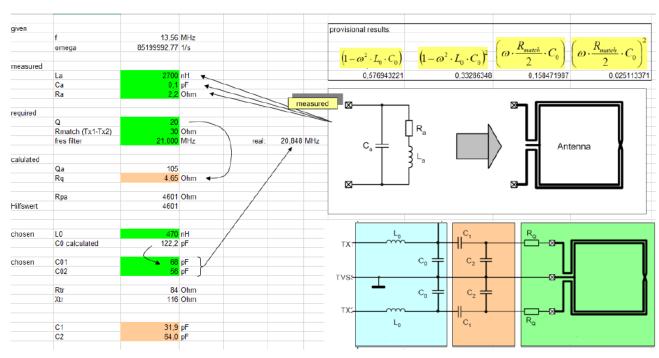
- Metal surfaces in the immediate vicinity of the reader antenna have several negative effects.
- Our reader antenna's magnetic field generates eddy currents in metallic surfaces.
- ► These eddy currents produce a magnetic flow opposite to that of the reader device

- Ferrites are basically poor electrical conductors but are very good at propagating magnetic flux (mostly of iron oxide Fe2O3)
- ▶ The ferrite material "shields" the metal behind it.
- It significantly reduces the generated eddy currents



Shielding and environment impact

- ► The figures show three different field strength characteristics over reading distance x, for the same antenna coil:
 - Free air coil (7.5 cm)
 - Coil surrounded by a metal plate (5 cm)
 - Coil surrounded by a metal plate shielded by a ferrite plate (7.5 cm)
- We can achieve almost original operating distance using ferrite shielding. However, the ferrite detunes the antenna and produces:
 - Increase inductance
 - Increase Q-factor
 - Changed magnetic field distribution
- ntenna must be suited to its environment.



Antenna Tuning

NFC antenna matching

Step 5: Calculate matching components (II)

- We input the following values into the excel sheet:
 - Antenna coil measured / estimated values (L_a, C_a, R_a)
 - Q-factor
 - Target impedance (Rmatch).
- The excel sheet calculates the values for the matching circuit and damping resistor.
 - \mathbf{R}_{0} , \mathbf{C}_{1} and \mathbf{C}_{2}

http://www.nxp.com/documents/other/AN11246 239810.zip

SOFTWARE TOOLS

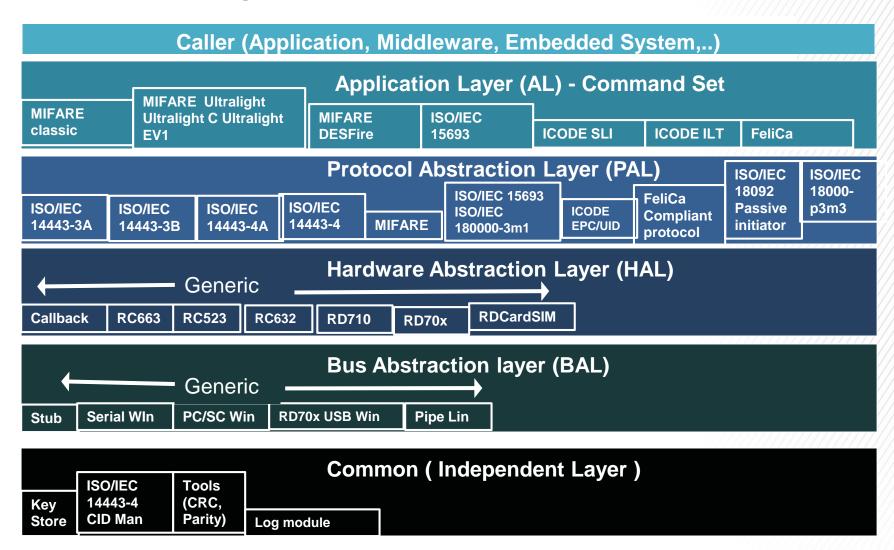
NXP Reader libraries

NXP provides software reader libraries to support their hardware products. The library is written in C language providing an API that allows the customer to create their own custom software stack and applications for their contactless reader.

The NXP Generic Reader library

• Supports system development for MIFARE Classic, Ultralight series and products based on ISO/IEC 15693 standard. This library is available for free download on the NXP website.

The NXP Export Controlled Reader library


• Supports system development for MIFARE Plus and MIFARE DESFire. This is available through DocStore and is subject to NDA with NXP.

The NXP NFC Reader library

• Supports system development for contactless readers communicating with other NFC devices. This library is available upon request .

Reader Library Model

Fully compiled: 60 k

Compliance Testing

NTAG I2C tag IC does not require FCC testing as it is a receiver.

NFC readers for mobile payments require:

FCC testing FCC Part 15 B unintentional emissions testing

FCC Part 15.225 Radio testing (radiated and conducted)

FCC/IC Approval

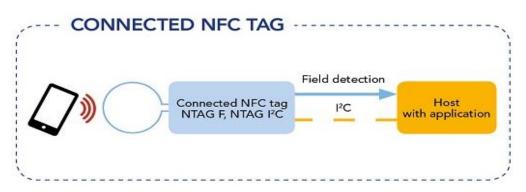
Approx. \$10k

EMVco payment certification testing Level 1- terminals, cards, and contact testing

Level 2- software testing

Level 1: Approx. \$10k, Level 2: approx. \$30k

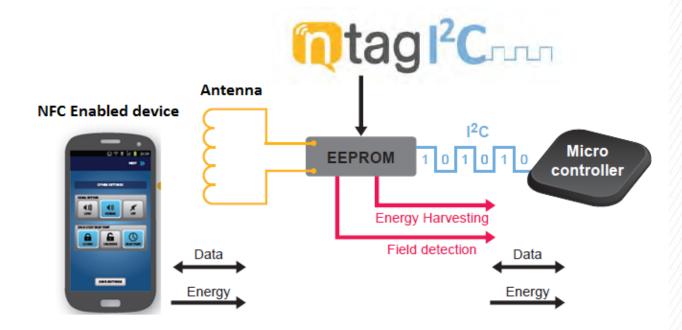
ESD Testing (2kV HBM) \$4k

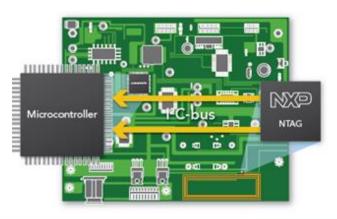

Product Solutions & Show-and-Tell

NTAG Plus
PN5180
PN7120
Energy Harvesting with NTAG

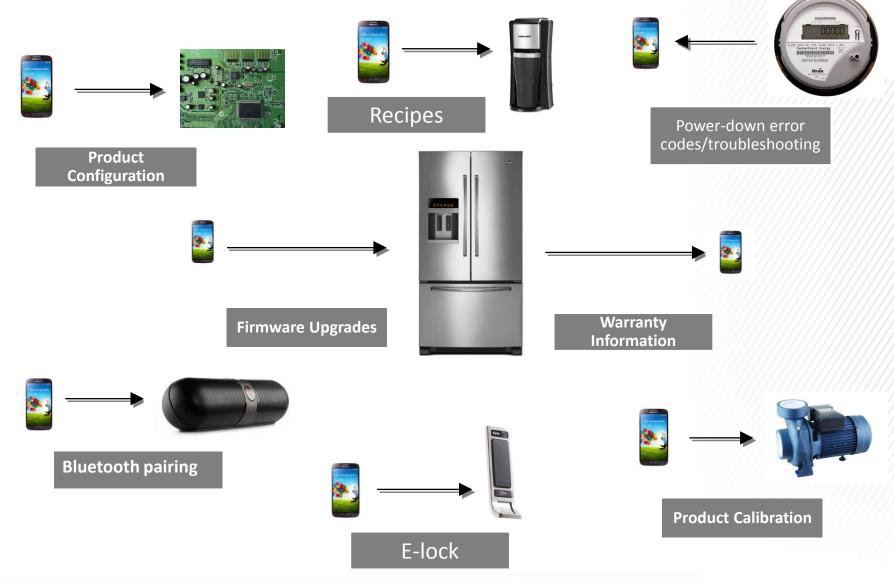
NTAG Plus: Add NFC to any MCU

- NTAG family provides both passive RF and I²C interface
- Some tags have additional interfaces: field detection, power harves
- NTAG I²C products are an excellent choice for applications that are meant to communicate with smartphones, for smart manufacturing and for embedded electronics
- Ideal for exchange of configuration data, diagnostic data or small firmware updates




- NTAG I2C Part Number:
 - NT3H1101W0Fxx
- NTAG I2C Evaluation Board:
 - OM5569/NT312D or E,699

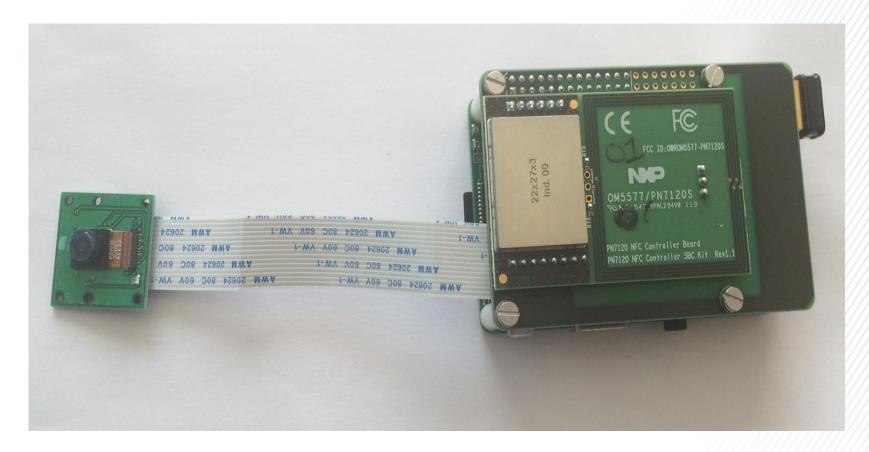
NTAG: How it works


NTAG I2C tag IC connects to host microcontroller via the I2C serial bus interface

NFC tag IC can be selfcontained module or integrated into PCB

NTAG I2C applications

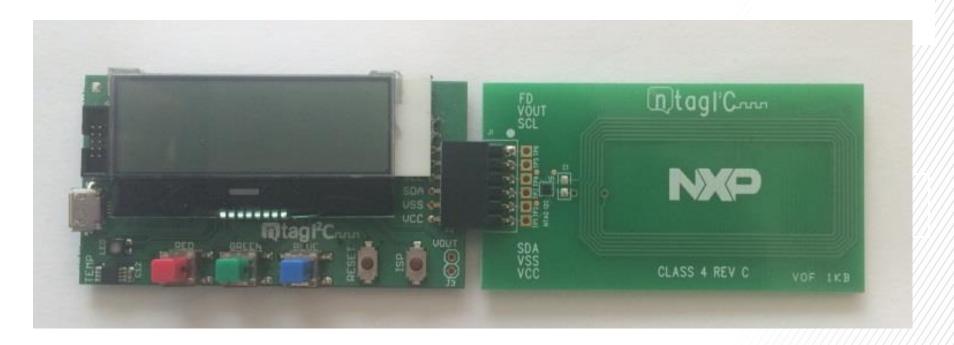
Demo: NFC Cockpit - PN5180



What it does:

Read tags!

Demo: PN7120



What it does:

Authenticates Wi-Fi, streams video and reads tags!

Demo: NTAG plus

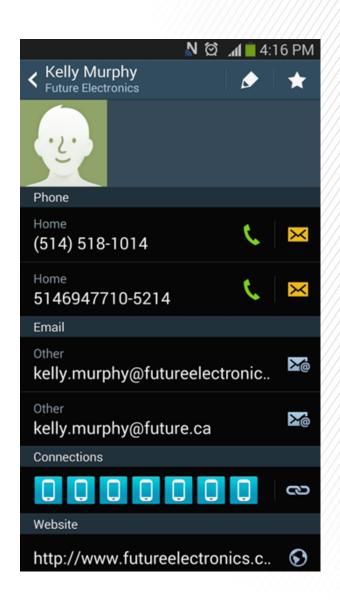
What it does:

Uses Android NFC to power switches, LED and an LCD

Demo: Energy Harvesting with NTAG

What it does:

Uses NFC, coin cell or solar to power an LCD to advertise pricing and other product info on a shelf display



Demo: NTAG Sniffer Board

NT3H1101 / NT3H1201

NFC Forum Type 2 Tag Compliant IC with I2C Interface

Learn More at ...

FREE HANDS-ON WORKSHOP:

One day free hands-on workshop focused on NXP's secure MCU product line through Energy Harvesting Smart Label (EnSL) + Security Access System (SAS) reference designs

FREE HANDS-ON WORKSHOP:

One day free hands-on workshop introducing attendees to three key technologies for the internet of things: NFC, Wi-Fi and Bluetooth Smart.

CONNECTIVITY DIGITAL PUBLICATION

Focused on the latest product information such as selector tables, datasheets, demo videos, tool discounts and more. Subscribe on-line at FutureElectronics.com

Q & A

