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ABSTRACT

A versatile UAV-borne lidar system has been developed then ap-
plied towards microforms mapping in a bog and tree segmentation
in a near-natural beech forest. The lidar system is based on an off-
the shelf lidar sensor. Georeferencing of its point clouds has been
done with a survey-grade navigation unit and further refined with
a global-shutter RGB camera. Hardware solutions have been de-
veloped for seamless integration of the components. A complete
software chain from data acquisition to point clouds generation has
been produced. The system’s boresight calibration has been carried
out with a novel method, which decreased the roll and pitch uncer-
tainty to 0.18° and yaw uncertainty – to1.6°. The system has been
applied to two contrasting environments: a rewetted cut-over bog
and a beech forest. Mismatched point clouds acquired over the bog
have been successfully aligned and combined to produce 1 × 1 cm
elevation models of the bog’s surface to further detect microforms.
Regarding the forest, a novel tree segmentation algorithm has been
developed. Qualitative assessment of its output revealed that be-
sides mostly correct results, both over- and under-segmentation oc-
curred. While the median tree height was underestimated by 1.5 m,
the distribution of heights closesy resembled the ground truth.

Keywords: UAV, lidar, bog microforms, tree segmentation, system
integration, boresight calibration.
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1. INTRODUCTION

Bog surfaces relate vital information about their condition, species composition and func-
tions (Couwenberg et al., 2011). Current approaches to capture relevant microforms with
high-resolution SfM1 or low-density airborne lidar2 are limited either in accuracy or reso-
lution (Korpela et al., 2009; Luscombe et al., 2015; Lovitt et al., 2017). A novel approach
using high-density UAV3 lidar to map microforms in a bog that is currently being restored
through rewetting was developed.

Different plant communities form characteristic microforms, such as lawns, hummocks
and hollows. By detecting the microforms, the underlying vegetation types and functions
of the bog, such as carbon fixation or methane production can be mapped (Lehmann et
al., 2016). Also, mapping microforms and topography support restoration efforts (Dargie,
2003; Raabe, Kleinebecker, Knorr, Hölzel, & Gramann, 2018). During restoration through
rewetting, one of the knobs to influence which communities are established is the water
table. By adjusting its level, optimal growth conditions for certain species are created at
different locations. It is therefore paramount to be able to describe the spatial distribution
of the diverse microforms and the bog’s topography.

For instance, if numerous positive key species were identified at a higher general eleva-
tion, the water table could be raised to provide them with optimal growth conditions, even-
tually sacrificing some “not-as-valuable” plant communities at a lower elevation. This is
just a speculative example of an action based on knowledge of elevation profiles and mi-
croforms distribution. In practice, the decisions to be made are more complex. Nonethe-
less, the usefulness of accurately describe the structure of a bog’s surface is evident.

So far, bog surfaces have been captured with low-density airborne lidar and SfM using
high-resolution RGB4 images. Lovitt et al. (2017) found that both methods overestimate
the true elevation with RMSEs5 of 40 and 84 cm respectively. UAV-borne lidar sensors
have the potential to significantly improve these results. In contrast to lidars flown at
higher altitude, these provide considerably better point densities. Compared with SfM
techniques, UAV-lidar provide higher global accuracy.

To the best of my knowledge, no airborne lidar mapping of bog microforms has been
conducted at an altitude lower than 250 m (Korpela, Haapanen, Korrensalo, Tuittila, &
Vesala, 2020). This thesis describes the development of a UAV-borne lidar system and
its application to capturing the structure of a bog’s surface. The system uses an off-
the-shelf lidar sensor (Velodyne LiDAR, Inc., 2018a), a survey-grade GNSS6-IMU7 unit

1structure from motion
2light detection and ranging
3unmanned aerial vehicle
4red-green-blue
5root-mean-square errors
6global navigation satellite system
7inertial measurement unit
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(Trimble Applanix, 2016) and a global shutter RGB camera (IDS GmbH, 2020d). Further
hardware and software, as well as a boresight calibration method were developed in-
house.

In order to verify the system’s universality, it was further used to segment trees in a
forested area. This way, its usability for mapping features ranging from sub-metre micro-
forms to 40 m tall trees has been investigated.

The herein presented system was developed within the SPECTORS project (Becker &
Mosler, 2019) and has so far been presented at an international conference (Dogotari et
al., 2019). A photograph of the system in its current state mounted on a carrier UAV is
shown in Figure 1.1.

LTE module
GNSS antenna

Power electronics
(Section 3.2.2)

WiMOD module
(Covered in Section 3.2.1.1)

(partly obstructed)

Camera mounted on
its interface board
(Section 3.2.1.3)

The puck

APX IFB (Section 3.2.1.1)
(mostly obstructed)

Puck IFB (Section 3.2.1.2),
NUC, Ethernet switch
(mostly obstructed)

Figure 1.1: The lidar system mounted on the DJI Matrice 600 Pro UAV.

The rest of the paper is structured as follows: Chapter 2 presents the acquisition cam-
paigns for the data used throughout the thesis. Chapter 3 establishes relevant coordinate
systems, describes the system and explains its hardware and software implementation.
Chapter 4 goes into further details regarding the boresight calibration of the system.
Chapter 5 motivates the detection of microform in bogs then describes an algorithm for
fusing data from misaligned flight lines, using the bog Vechtaer Moor in Lower Saxony,
Germany as an case study. It also presents the current results and discusses future im-
plementations. Chapter 6 deals with the segmentation of trees in a near-natural beech
forest in a natural forest cell in the German state of North Rhine-Westphalia. Chapter 7
provides closing remarks on the entire system, as well as the two use cases.
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2. DESCRIPTION OF THE DATA ACQUISITION CAMPAIGNS

Data from three flight campaigns (two in Niederkamp and one in Vechta) was extensively
used throughout this thesis. These campaigns are described in detail in Chapters 6 and 5.
But references to the corresponding datasets were inevitable in Chapters 3 and 4. In
order to aid understanding the earlier chapters without reading the later ones first, a short
description of the sites and the flight campaigns is given in this section. Moreover, data
from a fourth campaign in Duisburg had been used for the system’s boresight calibration.
No further analysis was performed on this data but for the sake of completeness, a short
description of the Duisburg campaign follows at the end of the current Chapter.

2.1. VECHTA

The flight campaign Vechta was conducted on 19.08.2020 over a small AOI8 in the Vech-
taer Moor (the Bog Vechta). The Bog Vechta is situated in the districts of Vechta and
Diepholz in the state of Lower Saxony and covers more than 20 km2. The area of inter-
est that was flown over lies completely within the district of Vechta and has an area of
10 hectares. The location of the bog, as well as that of the AOI is presented in Figure 2.1.

LS
Bog
AOI
Take-off

M2
M3
M4

Legend

Vechtaer Moor: Location  of the area of interest

Key plan

© OpenStreetMap contributors

Figure 2.1: Location of Vechtaer Moor and the AOI. Top right: position of the Bog Vechta within
Lower Saxony (LS). Main map: Outline of the AOI, paths of the flights: missions two, three & four.

8area of interest
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Three missions had been flown in the Vechta flight campaign: M2, M3 and M4. An
initial flight M1 along the same route as M2 had been flown beforehand, but its data
was discarded, since no heading alignment (Jaeger, 2017) of the GNSS-IMU unit had
been performed prior to data acquisition. The analysis of the data from the Vechta flight
campaign is presented in Chapter 5.

2.2. NIEDERKAMP

Campaigns Niederkamp 1 and 2 were conducted over a natural forest cell, or Natur-
waldzelle (NWZ) in Niederkamp, which is part of the town Kamp-Lintfort (District Wesel,
NRW9). The cell has an area of 8.2 hectares. The general location of the NWZ is pre-
sented in the Figure 2.2.

NRW
Ka-Li
NWZ-43
Take-off

M2
M3
M4
M5
M6

Legend

NWZ 43 Niederkamp: General location and flight paths

Key plan

© OpenStreetMap contributors

Figure 2.2: Location of NWZ Niederkamp. Top right: position of Kamp-Lintfort (Ka-Li) within North
Rhine-Westphalia (NRW ). Main map: Outline of the natural forest cell Niederkamp (NWZ-43) and
paths of five flights: missions two, three, four, five and six. The take-off point from the field next to
the forest is also shown.

The campaign Niederkamp 1 took place on 30.11.2020 and consisted of a single flight:
mission M2 in Figure 2.2. This data was only used to perform the boresight calibration of
the system, which is thoroughly explained in Chapter 4.

The campaign Niederkamp 2 consisted of five flights: the same M2 as in Niederkamp 1

and M3–M6 as seen in Figure 2.2. It took place on 18.12.2020 and its data was used
for conducting the analysis outlined in Chapter 6. The labelling of the flight lines started
at 2 because one dummy data acquisition was performed in the laboratory prior to both
campaigns and that data was preserved and kept its label. The last mission (M6) went

9North Rhine-Westphalia
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beyond the targetted area to collect further data from a similar part of the forest. This was
facilitated because it was the last flight of the day and the UAV’s accumulators still had a
considerable amount of charge left.

2.3. DUISBURG

Another flight campaign had been carried out in cooperation with the surveying company
Planungs- und Vermessungsgesellschaft ANSPERGER mbH (PVA) from Kamp-Lintfort,
who were a partner in the SPECTORS project. The campaign took place in Duisburg and
the object of interest was a pedestrian bridge that crosses railroads on the territory of the
steel concern thyssenkrupp Steel Europe AG (TKS). This bridge was chosen because
PVA scanned it from the inside and from underneath with a terrestrial laser scanner but
also needed some information from above to create a more complete model of the bridge.
The location of the bridge is shown in Figure 2.3.

NRW
Duisburg
Take-off
M1–M4
Bridge

Legend

Pedestrian bridge in Duisburg: General location and flight path

Key plan

© OpenStreetMap contributors

Figure 2.3: Location of pedestrian bridge. Top right: position of Duisburg within North Rhine-
Westphalia (NRW ). Main map: Outline of the pedestrian bridge, flight path and take-off location.

Four flights have been conducted along the path shown in Figure 2.3. The speed has
been varied between 2 and 5 m/s and the camera shutter interval was also changed to
obtain a few different front overlap ratios. The lidar dataset acquired during this campaign
was used when performing the boresight calibration of the system (Chapter 4). No further
analysis of the data had been carried out in the context of this thesis.
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3. SYSTEM DESCRIPTION

In this section, first a high-level overview of the system architecture is presented. Next,
the relevant coordinate systems are established and details of hardware and software
implementation are given.

The current paper presents a UAV-borne laser scanner system. At its core, the system
has a Velodyne VLP-16 Puck LITE lidar sensor (called puck in the rest of the paper). The
puck uses 16 laser–diode pairs to conduct ≈ 300 thousand time-of-flight measurements
of its surroundings each second. The positions of the laser returns are provided by the
puck in its own reference frame (Velodyne LiDAR, Inc., 2019b, p. 53). To convert these
measurements to meaningful georeferenced point clouds, the position and orientation of
the puck relative to the Earth needs to be known as well. A high-grade GNSS-IMU unit
from Applanix – the APX-15 RTK10 (simply APX from now on) – is used for this purpose.
The APX records the pose of the lidar unit in a world reference frame and data from both
sensors are combined to obtain the longitude, latitude and elevation of the lidar readings.
Both these data streams are recorded on a SBC11. A second-generation NUC12 has
been chosen for this task. The APX gets its RTK corrections via an LTE13 USB14 stick.
Alternatively, a backup radio for operation in remote areas has also been implemented.
Furthermore the system features a 12-megapixel global-shutter RGB camera used for
generating photogrammetric products. Its raw images are also saved on the NUC. The
system, weighing 3.3 kg and requiring up to 45 W of power, is flown on a DJI Matrice 600
Pro UAV. A simplified system diagram, complete with data flows is shown in Figure 3.1.

Camera

APX

Puck

puck
sync

GNSS

Wimod GNSS
corr

cam
sync

NUCcontrol + GNSS corr

data

control

data
LTEGNSS

corr

UAV
HDMI

Tablet

Radio

Optional

control

data

Figure 3.1: Simplified system diagram: main components and data-flows. The NUC acts as a
control hub and data storage for all sensors. (See Sections 3.2.1 & 3.3.1.) The APX generates
synchronization signals for the puck and saves timestamps for camera shots; GNSS corrections
are delivered to the APX either via LTE or a custom radio link. (See Sections 3.2.1.1–3.2.1.3.)
The NUC–HDMI–UAV–Radio–Tablet path represents a video stream sent from the NUC to the
UAV operator. (See Section 3.3.3.)

10real-time kinematic positioning
11single-board computer
12Intel® Next Unit of Computing
13long term evolution
14universal serial bus



7

3.1. COORDINATE SYSTEMS AND GEOREFERENCING

This section shortly presents the coordinate systems of the relevant components (lidar
unit, GNSS-IMU device, UAV frame) and outlines how they relate to each other, as well
as to locations on the Earth. Parallelly, the transformations necessary for georeferencing
the lidar returns are presented. These are mainly rotations and they depend strongly on
how the particular components are mounted. Therefore, Figure 3.2 displays the native
coordinate systems of the puck, APX and UAV in their current mounting positions.

Web UI

Flight direction = UAV nose

APX
Puck-centred
UAV framePuck

x x y

z

xzz

yy

Own
software

Figure 3.2: Coordinate systems of the puck, APX and UAV. Transformations from the APX frame
to the puck-centred UAV frame are automatically done by APX, after applying the appropriate
settings in its web UI. The puck to UAV transformations are done in own software. (Details below.)

The “puck-centred UAV frame” in Figure 3.2 is an imaginary construct. The orientation
and naming of its axes are consistent with the convention used by Nonami et al. (2010),
Concurrently, this frame has its origin at the puck’s centre, regardless of the UAV onto
which the system might be mounted. The advantage of using such a construct is that the
roll, pitch and heading angles output by the APX have a well-defined meaning. Moreover,
transformations between the puck and this frame are simplified to just one rotation.

The APX is used to relate the lidar ranging measurements to point locations in the real
world. Therefore it was configured to output the position and orientation of the puck’s cen-
tre relative to a world reference frame. By precisely positioning the puck’s centre instead
of any other point in the system, the georeferencing is significantly simplified. To enable
this function, the procedure documented by Applanix Corporation (2019b, pp. 17-23) was
followed. It consisted of measuring mounting angles between APX, puck and UAV, as
well as lever arms between APX, puck and GNSS antenna. These were measured in
CAD and confirmed in real life, then configured in APX’s web UI15.

The APX outputs the orientation as three angles: roll, pitch and true heading. These rep-
resent rotations of the APX’s target reference frame relative to a world frame. The angles
refer to simple rotations about x, y and z respectively. The roll, pitch and heading can be
interpreted more intuitively when the orientation of the UAV’s frame is regarded instead
of that of the puck. For instance consider a yawing motion: it would be correctly seen
in heading in the case of the UAV, but might be confused with pitch in the puck’s native
system. Therefore, the aircraft’s reference frame was configured as the output system in

15user interface
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APX’s settings menu. As a result, the APX’s output is such as would be measured by
a GNSS-IMU unit situated in the puck’s centre but with the IMU’s x axis pointing to the
UAV’s nose and the y-axis—to the UAV’s “right wing”. Besides making the output angles
more interpretable, using the UAV’s frame for APX’s output also ensures that the data
processing can be more readily adapted to systems with other mounting positions for the
lidar and GNSS-IMU units: Only this initial step would need to be adapted for a different
system, but successive steps should work as they are.

Now given that the APX outputs its data in the puck-centred UAV frame, it is important to
transform the puck data to this exact frame before the two data-streams can be combined.
The respective procedure is described below.

Every laser return of the puck has its position described by the following spherical co-
ordinates in the puck raw data: range R, elevation ω and azimuth α. Consider the vec-
tor p that connects the origin O (0,0,0) of the puck’s coordinate system to a laser return
P (X,Y,Z). Then R represents its length: R = ∥p∥. The azimuth α is the angle between
the y axis and the projection of p onto the xy plane (pxy). The elevation ω is then the
angle between p and pxy. Following these definitions (Velodyne LiDAR, Inc., 2019b,
pp. 53-54), the Cartesian coordinates of P in puck’s reference frame are:

ppuck =

⎡⎢⎢⎢⎢⎢⎢⎣

Xpuck

Ypuck

Zpuck

⎤⎥⎥⎥⎥⎥⎥⎦

= R

⎡⎢⎢⎢⎢⎢⎢⎣

cosω sin θ

cosω cos θ

sinω

⎤⎥⎥⎥⎥⎥⎥⎦

(3.1)

Now consider the relative orientation of the UAV’s and puck’s coordinate systems. It
takes two rotations around the axes to map one onto the other. For instance, the puck’s
coordinate system can be rotated to that of the UAV by first rotating around its original
x axis by −π

2 , then around the new z′ axis by −π
2 . However if one wants to change the

location of the laser returns from the puck’s coordinate into that of the UAV, the inverses
of these rotations have to be used. So if the position of the point P in puck’s reference
frame (Equation 3.1) is considered, then its coordinates in the UAV’s frame are:

puav =

⎡⎢⎢⎢⎢⎢⎢⎣

Xuav

Yuav

Zuav

⎤⎥⎥⎥⎥⎥⎥⎦

=Rz′ (
π

2
)Rx (

π

2
)ppuck (3.2)

Note that the order of rotations does matter and in the equation above Rx (π2 ) is executed
before Rz′ (π2 ). The following notation for rotations R around each of the axes x, y and z

by the angle θ are used throughout this paper:

Rx (θ) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎤⎥⎥⎥⎥⎥⎥⎦

; Ry (θ) =

⎡⎢⎢⎢⎢⎢⎢⎣

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎤⎥⎥⎥⎥⎥⎥⎦

; Rz (θ) =

⎡⎢⎢⎢⎢⎢⎢⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(3.3)
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The rotation matrices from Equation 3.2 can be expanded and then multiplied as follows:

puav =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 −1
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

ppuck (3.4)

puav =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 1

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

ppuck (3.5)

The relationship obtained in Equation 3.5 is used to obtain the coordinates of all lidar
returns in UAV’s reference frame. At this point both the puck and APX data are in the
same coordinate system, so georeferencing the points is trivial. Given APX’s output
angles roll (γ), pitch (β) and true heading (α), the following rotations calculate the points’
coordinates in a north-east-down (NED) system with the origin at the puck’s centre:

pned =Rz′′ (α)Ry′ (β)Rx (γ)puav (3.6)

It can be verified that the result is indeed in a NED system by assuming a point with the
following UAV coordinates: vuav = [x0 y0 z0] and the following angles: α = 0, β = 0, γ = 0,
which mean the UAV’s nose is pointing exactly to the north and its right wing to the east.
Rotating by zero degrees around each of the axes, leaves the coordinates unchanged, so
vned = [x0 y0 z0]. By consulting the UAV’s coordinate system and its current orientation, it
becomes apparent the point’s coordinates x0 units towards north, y0 units towards east
and z0 units down, the same as a NED system.

The following rotation transforms the coordinates obtained in Equation 3.6 from NED to
east-north-up (ENU)—a more intuitive coordinate system:

penu =Rx′ (π)Rz (−
π

2
)pned (3.7)

Now the georeferenced location of each laser return is calculated by adding the position
of the puck to the result from the Equation 3.7:

pgeo = penu +

⎡⎢⎢⎢⎢⎢⎢⎣

Easting

Northing

Elevation

⎤⎥⎥⎥⎥⎥⎥⎦

(3.8)

Where Easting and Northing are obtained by representing the APX-provided puck coor-
dinates in a projected CRS16 and the Elevation is output directly by the APX as the puck’s
height above the geoid.

The transformations described in the current section were implemented in software. Fur-
ther programming details are presented in Section 3.3.2.1.

16coordinate reference system
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3.2. HARDWARE

The hardware integration of the system had the following aims:

• Establish communication interfaces between components;
• Supply power to each component;
• Balance feature richness with ease of use;
• Ensure reliable operation under normal use conditions.

Besides these overall targets, further practical considerations were made. For instance,
it was opted to use standard connectors for interfaces which would be routinely exposed
to the outside of the system, like USB and Ethernet. But more ruggedized options were
chosen for either non-standardized interfaces, or for connections that are only seldom
accessed from outside, such as power connections and digital IO17 between devices.
Moreover, the enclosures of the NUC and the Ethernet switch were discarded to enable
easier mounting. Because the system was developed as a prototype, weight saving and
other optimizations were not considered in the current paper. Some high-level details
of hardware design and implementation are presented in the following subsections. The
relevant schematics can be found in Appendix A.

3.2.1. INTERFACE BOARDS

This section succinctly presents the overall functions and a few features of the PCBs18

that were designed to be used at the interfaces of the three main sensors: puck, APX and
RGB camera. Furthermore, the motivation as well as some design decisions for each of
the IFBs19 are presented in the following subsections.

3.2.1.1. APX interface board
The APX is a feature-rich board, providing Ethernet and USB among other interfaces.
However, to enable a miniature size (67 x 60 x 15 mm) and mass (60 g), the APX exposes
all its electrical interfaces only through a 44-pin IO connector (Trimble Applanix, 2016).
The manufacturer provides an evaluation board (Applanix Corporation, 2016, p. B-1), that
routes all these signals to standard and more user-friendly connectors. While extremely
versatile, the evaluation board is over 10 x 15 cm large, taking up more space than even
the NUC. Consequently, a much smaller IFB was developed in-house. Its functions were
restricted to the minimum necessary:

• Supply adequate power to the APX;
• Provide a communication interface to the NUC;
• Facilitate synchronization of APX and Puck;
• Enable reception of GNSS correction messages;
• Feature a few LEDs20 for easy debugging on the ground.

Synchronization with the puck The main function of the APX is to record the position
and orientation (together called pose) of the puck in a world frame. This is then used to

17input–output
18printed circuit boards
19interface boards
20light emmiting diodes
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compute the georeferenced coordinates of the puck’s laser returns. The puck’s pose is
obtained by recording APX’s own pose and applying translations and rotations to account
for the sensors’ relative mounting. However, since the puck rotates at 5 − 20 Hz and
the dynamics of the system overall are fast-changing, very precise alignment of the data
streams is necessary. One way to accomplish this is to have the sensors provide accurate
timestamps for their data. A very accurate and readily available time basis is the GPS21

time, which is computed by the APX (or really any other GNSS-receiver) simultaneously
with their position—it is a core component of all GNSS systems. The GPS time differs
from the UTC22 by a fixed offset. Since 31.12.2016 the offset has been exactly 18 seconds
and the earliest possible adjustment might occur on 31.12.2021 (Bizouard, 2021). The
APX measures the GPS time, transforms it to UTC and communicates it to the puck. The
procedure is documented by the manufacturers of both sensors (Velodyne LiDAR, Inc.,
2019b, pp. 41-49; Applanix Corporation, n.d., pp. 6-8).

The synchronization is implemented as follows: The APX generates a PPS23 signal, that
is a short pulse whose rising edge coincides with the beginning of a UTC second. This
pulse is shortly followed by a GNSS message specifying the UTC at the instant of the
PPS’s rising edge. The puck then uses this information to interpolate the timestamp of
each Ethernet packet that it sends to the NUC. To make use of this feature, the PPS
signal of the APX, the TX24 of its RS23225 port as well as a ground connection had to be
wired to an external connector which then goes to the puck via a cable.

Communication interface The APX has a web UI through which all the important set-
tings can be changed, the positioning solution can be checked in real-time and even
firmware updates can be made. Furthermore, the sensor’s data can be retrieved via
Ethernet. Therefore it was crucial to integrate the APX’s Ethernet interface into the IFB.
Four connections had to be made from the 44-pin connector on the APX to a standard
RJ45 connector on the IFB in order to make use of the APX’s integrated 10/100BASE-T26

Ethernet controller (Applanix Corporation, 2019a, p. 9).

Transformers (aka magnetics) are crucial for signal conditioning in Ethernet applications.
The APX’s documentation specifies that "the magnetics are implemented on the board"
[i.e. on the APX] (Applanix Corporation, 2019a, p. 9), making further magnetics on an
IFB redundant. However the manufacturer’s own evaluation board (Applanix Corporation,
2016, p. B-1) does includes an Ethernet transformer as well as a TVS27 diode array. In
order to offer the same level of protection, both were added to the new IFB. They were
assembled in a circuit proposed by Marak and Havens (2015, p. 14). This circuit is meant
to protect the Ethernet data lines from over-current, transient voltages and electrostatic

21global positioning system
22coordinated universal time
23pulse per second
24Transmit wire on multiple serial communication interfaces.
25A low-speed serial communication protocol, functioning both with and without flow control.
2610BASE-T and 100BASE-T refer to 10 and 100 Mbps Ethernet respectively. Both these standards use

two differential pairs: one for transmitting and one for receiving data.
27transient voltage suppressor
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discharge. Further recommendations for placement and routing of Ethernet components
(Microsemi, 2018; Pulse Electronics, 2020) were also followed when designing the IFB.

Power safety features Even though the power electronics that were designed for the
system provide extensive protections from various potential power failures (see Sec-
tion 3.2.2), further safety measures were implemented for the APX. These were deemed
necessary because the APX is by far the most expensive component in the system. Fur-
thermore, while one would have to use either my or the manufacturer’s IFB to connect to
the APX, it would be trivial to bypass the power electronics and therefore the protections
described in Section 3.2.2. To this end, an IC28 featuring "overvoltage, undervoltage and
reverse supply protection" (Analog Devices, Inc., 2019) was selected and implemented
in the IFB circuitry.

Simplified graceful shutdown Besides the real-time output of position and orientation,
the APX supports logging of raw IMU and GNSS measurements to its internal memory.
Since the logging takes place continuously, simply powering off the board might lead to
data corruption. In order to guarantee the integrity of the data, the manufacturer recom-
mends that a graceful shutdown be implemented whereby the power can only be turned
off after sending APX a signal and receiving the board’s OK to shutdown (Applanix Cor-
poration, 2019a, pp. 7–8). This effectively gives the board time to safely close any open
files before being powered off. The manufacturer’s evaluation board implements this by
using two slide switches that have to be operated in a simple, yet strict sequence for both
powering up and down the board. To minimize the risk of data corruption due to human
error, the graceful shutdown feature on our IFB was implemented with just one switch and
a few logic gates. As a result, turning on and off the board takes only one flip of a switch.

An annotated photograph of the APX IFB is shown in Figure 3.3.

Ethernet circuit
and connector

Power circuit
and connector

On/off switch
and its circuit

Connectors for puck,
WiMOD* and camera

Indicator
LEDs

Figure 3.3: Photo of the APX IFB. * WiMOD is the radio interface explained in the next paragraphs.

28integrated circuit
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Radio interface for RTK corrections The RTK function of the APX requires correc-
tions from another GNSS receiver. In RTK terminology, the APX is a rover, while another
stationary receiver – a base. Normally, the base is a physical receiver situated nearby,
that sends its observations to the rover via a radio link. Alternatively, VRSs29 can be used.
Their "observations" are generated by a network of receivers usually some distance away,
that infer what a GNSS receiver would observe near the rover’s location.

In the present system, two channels for delivering corrections to the APX have been
implemented. By default, corrections from a VRS are received via internet. The LTE
module is responsible for providing access to the internet when the system is airborne.

A backup solution was implemented for areas with poor cellular coverage. Two radios
were used to establish a link for sending the corrections from a physical base. Ra-
dio links are always subject to trade-offs between multiple factors, such as power us-
age, achievable distance and link throughput. In order to allow flexibility when balancing
these factors, WiMODino™ boards (IMST GmbH, 2019) were used. They provide an
Arduino®-compatible programming interface for an array of WiMOD™ radio modules that
use chirp spread spectrum modulation techniques to obtain high-budget but relatively
low-throughput radio links (Seller & Sornin, 2013).

A significant advantage of the WiMODino™ boards is that the modules they carry oper-
ate at two different frequencies: 868 MHz and 2.4 GHz, thus covering a range of possible
combinations of achievable distance versus channel throughput. Moreover, the electrical
and mechanical interface of both boards is identical. Therefore changing the radio mod-
ule used in a system is straightforward. So it was reasoned that using the WiMODino™
platform would enable swapping off the boards when necessary to e.g. extend the dis-
tance from base to rover at the cost of corrections’ update frequency.

In the current implementation, two WiMODino™ boards with WiMOD™ iM282A modules
(IMST GmbH, 2018a) were used. The iM282A module operates in the highest frequency
band of the series: 2.4 GHz, so it features higher data-rate than the other modules, but
also the shortest range. For instance, an effective data-rate of 5.08 kbps at a distance of
over 5.7 km line-of-sight was documented without any packet loss (IMST GmbH, 2018b).

As for the two WiMODino™ boards used in our system, one got corrections from a sta-
tionary base and forwarded them to the other via radio, which passed them onto the
APX. The communication with both the base and the rover were realized with UARTs30.
An "Arduino® shield"-style board for signal level translation and connector mating was
designed. The programming of the radio link was done by Vu and Dogotari (2020). A
simplified system diagram is shown in Figure 3.4.

Wimodino 1
Radio

APX
UARTGNSS

Base
Wimodino 2

UART

Figure 3.4: Diagram of RTK corrections via WiMOD radio link.

29virtual reference stations
30universal asynchronous receiver-transmitters
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A successful proof-of-concept for the design using WiMODinos™ was realised. A com-
puter connected to a VRS acted as the base and the APX achieved RTK fix based on the
received corrections. Furthermore, the setup was tested with an available Emlid Reach
RS2 base and even though corrections were received and interpreted by APX as being
RTCM messages, no RTK fix was obtained. The likely explanation seems to be that the
Reach RS2 did not provide the RTCM message 1008 to complement its corrections. This
message, which refers to antenna description, seems to be required by Trimble receivers
(SNIP Support, 2020; torriem, 2019). Moreover, torriem (2019) suggested the limitation
could be overcome by injecting a dummy RTCM 1008 message. However, the proposed
method has net been tested for the current work, because operation in LTE-denied envi-
ronments has not been a necessity so far. Nonetheless, since a recent firmware update,
the RS2 supports the RTCM message 1008 natively (Fursa, 2021), so using it with the
current radio-link should function properly.

3.2.1.2. Puck interface board
The puck is a fairly ruggedized sensor with all its IO-connections provided through a
three-meter long shielded cable. This cable contains an Ethernet interface, as well as
further connections for supplying power to the puck and synchronizing it to a GNSS re-
ceiver (Velodyne LiDAR, Inc., 2019b, p- 40). By default, the manufacturer delivers the
puck with a ready-to-use interface box. However, several potential shortcomings were
identified, thus motivating the design of an own IFB. Fortunately, the schematics of the
manufacturer’s IFB were provided (Velodyne LiDAR, Inc., 2019b, p. 112) and could be
used as a starting point for the new design.

Compared to the original interface board, mine has the following main differences:

• The power barrel connector was replaced with a more robust Molex connector;
• The screw terminal array for the sensor-side cable was also replaced with a Molex

connector and a suitable plug was fitted to the cable;
• The cable shield was connected to ground. This is recommended by Velodyne

LiDAR, Inc. (2018c, p. 15), but not always implemented (compare Velodyne LiDAR,
Inc., 2018b, p. 7 with Velodyne LiDAR, Inc., 2019b, p. 40);

• Magnetics, fuses and TVS diodes were added to the Ethernet interface;
• The circuitry for powering a GNSS/GPS device was discarded.

Furthermore the three-meter long cord was shortened to aid cable management. In order
to keep the warranty valid, a waiver and instructions for safely cutting the cable were
obtained from the puck’s manufacturer (Velodyne LiDAR, Inc., 2018c).

The safety features of the original IFB (a 3-Ampere fuse and a TVS diode) were adopted
into the new design.

Summarizing, the current IFB provides the puck with a standard Ethernet jack, an array
of field-ready connectors and protection mechanisms for potentially vulnerable interfaces.
An annotated photograph of the puck IFB is presented in Figure 3.5.
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Ethernet circuit
and connector

Power circuit
and connector;

Indicator
LEDs

Puck
connector

APX
connector

Figure 3.5: Photograph of the puck interface board.

3.2.1.3. RGB-Camera interface board
The RGB camera comes with a USB-C port that is used in conjunction with appropriate
software (IDS GmbH, 2020b) for programming the camera and retrieving its images. In
order to enable accurate synchronization of the images with the GNSS-IMU data, an
interface board was developed.

Besides the USB interface, the camera provides an IO connector that exposes standard
optocoupler-isolated trigger-in, flash-out functions. The connector also contains two non-
isolated GPIOs31 and a five-volts line to power external devices (IDS GmbH, 2020e). In
order to identify where each photo was taken, an output signal had to be generated and
sent to the APX, which would forward the time-stamped pose to the NUC. Normally, the
existing flash-out function would be used for this purpose. However, to allow greater flex-
ibility and potentially slightly more accurate time-stamping as a result of faster switching
speeds, the GPIOs were used to generate this signal instead of the standard flash-out
pins. Since the signal needs to travel over yet another cable to the APX IFB, it was fur-
ther buffered with a standard logic IC to "hide" the cable’s capacitance from the camera’s
driver IC. Moreover, the signals were designed to safely interface with the APX, which has
stringent requirements on the acceptable voltage range (Applanix Corporation, 2019a).

While only one GPIO is strictly necessary in the current usage scenario, i.e. stamp each
photo, both GPIOs were equipped with buffers in order to facilitate other potential usage
scenarios, e.g. interleaving photos with different settings, synchronization with further
hardware, etc. In addition, all the pins were routed to an extra connector. Also, a proto-
typing area was integrated to allow for future hardware modifications. Due to space con-
straints and in order to simplify swapping the camera, the IFB was actually implemented
as two separate PCBs. One is rigidly mounted to the puck and contains the prototyping
area, while the other contains the buffering circuitry and serves as the mounting plate for

31general-purpose input–outputs
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the camera. The latter is connected to the camera with an open-ended cable (IDS GmbH,
2017), which was fitted with a Molex connector for ease of use. The two boards feature a
circular design with mounting holes in a regular pattern that enables pointing the camera
off-nadir if, for instance, a building’s facade is being surveyed.

Due to its position under the UAV (see Figure 1.1), the puck has a lateral (cross-track)
FOV32 of about 240° (nadir±120°). The upper 120° of its lateral FOV (zenith ±60°) are
partially blocked by the UAV and its propellers. The side scans that the puck collects can
thus be enhanced with photography by rotating the camera to the side. A photograph of
the camera plus interface board assembly is shown in Figure 3.6.

Camera lens

Camera and
breakout

connectors

Partial view
of bottom board

Buffer circuit
and APX
connector

Top board
range of
motion

Camera
mounted onto

top board

Approximate
puck FOV

Figure 3.6: Photograph of the camera’s IFB. Note that the bottom board is only partially visible.
The puck’s approximate lateral FOV is also shown with a semi-transparent green-yellow pattern.

32field of view
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3.2.2. POWER ELECTRONICS

The design of the power electronics consisted of the following stages:

• determining each component’s requirements in terms of voltage and power;
• summarizing the needs of the whole system;
• finding appropriate sources;
• designing the necessary conversion steps and safety features;
• picking components and testing individual power stages;
• assembling and testing the system as a whole.

One key aspect of the power electronics design was minimization of voltage regulation
stages required, so special care was given to determining the input voltage ranges of
each component and using overlapping regions wherever possible.

The most power-hungry component was the NUC, which required at most 24 watts (W)
at 15 volts (V) under full load with no peripherals attached (Prüm, 2019). Although its
datasheet specified the required input voltage as 19 V ±10% (Intel Corporation, 2014),
feeding it with 12–19 V is in fact acceptable Prüm (2017, p. 17).

The second hungriest component was the puck, due to its active laser and continuous
motor operation. Its voltage requirements were stated by the manufacturer as 9–18 V
(Velodyne LiDAR, Inc., 2018a). However, further inquiries revealed that it is safe to power
the lidar unit with 9–32 V (Velodyne Acoustics, Inc., 2015; Velodyne LiDAR, Inc., 2019a).
The puck’s typical power draw is 8 W, with current surges of 3 amperes (A) at startup,
independent of the supplied voltage (Velodyne LiDAR, Inc., 2018a).

Next, the APX accepts 9–30 V and consumes 3.5 W typically (Trimble Applanix, 2016)
plus it needs to supply its active GNSS-antenna a further 0.1 W typically (Tallysman Inc.,
2019). The Ethernet switch, the RGB-camera and the LTE dongle require 5 V and con-
sume up to 8.8 W combined (Conrad Electronic SE, 2016; IDS GmbH, 2020d; Huawei
Technologies Co., Ltd., 2015). These needed to be powered through the NUC’s USB
ports, so the NUC’s total power demand rose to 33 W peak.

Summarizing, the system needed about 33 W at 12–19 V for the NUC with its peripherals
and another 12 W at 9–30 V for the puck and the APX. Regarding current, 5–6 A had to
be sustained for short times when starting the laser and booting the NUC.

Once the requirements of the system have been identified, an appropriate power source
had to be found. The first instinct was to power the system from the UAV, but it is im-
portant not to deplete the UAV’s accumulators too fast, as it would negatively impact the
flight time. The UAV’s manufacturer published a graph relating the payload mass to the
platform’s flight time (DJI, n.d.).33 These data were used to derive the power consump-
tion’s dependency on the payload’s mass. A linear function with a slope of ≈ 286 W/kg
was obtained (R2 = 0.9979, see Figure 3.7).

It takes ≈ 286 W to carry each kilogram of payload. The system weighs 3.3 kg without any
power source, so it takes ≈ 945 W for the UAV to carry it, but just 45 W to power it. Given
this argument, it is reasonable to power the lidar system with the UAV’s accumulators

33The data most likely refers to hovering in a no-wind environment at 10 m above sea level (DJI, 2018b).
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Figure 3.7: Flight time and power draw for DJI M600 Pro with TB47S accumulators. (Conditions
from Footnote 33 apply.) The flight time versus payload mass was retrieved from a graph on the
official DJI page through a graph digitization process. The power draw was obtained by dividing
the stated accumulator capacity by the retrieved flight time. The high R2 values indicate that it is
appropriate to use the extracted formulas as an approximation of the "true" behaviour as long as
the payload mass stays within the specified range ([0,6] kg).

instead of carrying an extra accumulator. Another way to picture it is that the 45 W re-
quired by the system are analogous to 45��W /286��Wkg ≈ 0.16kg of extra payload and as long
as the system’s mass stays above 0.16 kg, powering it from the UAV’s accumulators is
most effective. The only sensible way to increase the flight time would be to considerably
reduce the system’s weight.

The UAV features a power port that directly corresponds to its accumulators’ voltage of
18 − 26 V and provides a maximum current of 10 A (DJI, 2017, p. 10). Since the voltage
range fits within the requirements for the APX and the puck, it was decided to power these
directly from the UAV. But because it significantly exceeds the guaranteed safe voltage
for the NUC, a step-down regulator was added to the circuit.

That said, on a typical flight campaign the system would spend considerably more time
on ground for various checks, settings and troubleshooting than in the air for data acqui-
sition. Therefore it is desirable to power the system from another source while on ground
and seamlessly switch between it and the UAV’s accumulators while airborne. Two real
power sources shall not be connected directly in parallel, as they may be damaged by
reverse currents. A simple circuit using (Schottky) diodes at the accumulators’ output
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would protect both sources, but it would be terribly inefficient. Instead, Lucieer’s recom-
mendation (2018) was implemented: an appropriate IC that performs an "ideal diode"
function thus enabling the use of multiple power sources was identified and integrated
in the power electronics design. The chosen IC also has built-in protection from reverse
polarity, as well as over- and undervoltage conditions (Linear Technology Corporation,
2012). Further mechanisms to protect both the UAV and the system from a range of
power failure modes such as transient voltages, short circuits and inrush currents were
implemented. The simplified diagram of the power electronics is presented in Figure 3.8
and the complete schematic circuit – in Appendix A.
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Figure 3.8: Diagram and photograph of the power electronics. Only the redundant power supply
board (RPS) is shown in the photo, as the DC-DC converter is directly under it. The RPS imple-
ments input validation for detection of over- and undervoltage conditions. The validation is done
by the IC and the limits are set via external resistors. Out of the 3 inputs, input 1 has the highest
priority. As long as its voltage stays within the accepted limits, it is connected via a low-impedance
path to the output. If its voltage is not within the limits – input 2 is used and so on. The UAV has
the lowest priority, so that its battery is conserved while on the ground. Typically the inputs 1 (and
2 if used) are disconnected by the operator just before starting the UAV motors and are recon-
nected after landing and turning off the motors.
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3.3. SOFTWARE

The software developed for this thesis divides, according to its function, into software for
(in-flight) data acquisition on one hand and data (post-)processing on the other. The sole
mission of the acquisition component is ensuring that all data is saved to disk while the
UAV is airborne and computing resources are at a premium. The more computationally-
intensive creation of point clouds takes place later in the processing step and normally on
other computers. Additionally, a non-core component for in-flight data visualization has
been programmed for easier in-field operation. The following sections describe some of
the more important functions and processes. The entire codebase is available on GitHub
(Dogotari & Rostalski, 2021).

3.3.1. DATA ACQUISITION

High-level overview A main script written in Python 3 (Version ≥ 3.5.0) is started on
the NUC before every flight and it deals with recording the data streams coming from the
three sensors: puck, APX and camera.

The main script needs to be started by the operator, who either specifies a few command-
line arguments, or the defaults are used. These tunable parameters are: custom folder
name (after the mandatory mission number), flying height, maximum acceptable blur,
desired RGB overlap and maximum flying time. With the exception of the folder name, the
arguments refer to camera operation. The main script calculates the maximum number of
images based on the flying time and passes it as an argument to the camera acquisition
program, which terminates upon reaching this limit. This upper limit on the number of
images to be acquired was imposed due to the space usage of the camera data, which
is significantly larger than that of the other two sensors. Nonetheless, a conservative
upper limit of 30 minutes, which is longer than the normal flight duration is usually used.
This way, images are acquired during the entire flight duration, but the acquisition ceases
shortly after landing. This is useful if the operator cannot attend to the UAV immediately
and disk space is at a premium.

Figure 3.9 depicts a typical data acquisition campaign, often consisting of multiple flights.

For most of the campaign duration, a laptop is connected to the system via Ethernet to
enable access to the sensors’ web-interfaces as well as to the NUC’s SSH34. Beginning
and stopping data acquisition is done from a laptop computer that uses SSH to log onto
the NUC and start/terminate scripts. One step that is not shown in Figure 3.9, but is
implied, is disconnecting the controlling laptop before every flight and reconnecting it
after each landing. Usually, the external accumulator is plugged simultaneously with
the Ethernet cable. The same applies for unplugging: Ethernet and accumulator are
disconnected at the same time. This way, the duration that the system feeds off the
UAV’s batteries is minimized. To ensure collection of consistent data, the flight missions
are planned and executed with a mission planning software: the DJI GS Pro (DJI, 2018a).

34secure shell
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Figure 3.9: Typical flight campaign procedure. For the initial check, the operator has to ensure
that: (1) the puck is receiving APX’s signals, (2) the APX is getting RTK corrections and (3) the
NUC has at least 50 GB of disk space available. The post-flight check ensures that: (1) data has
been written to disk and (2) the main Python script and its children have been terminated properly.

Puck and APX data The puck’s data comes over UDP35 (Velodyne LiDAR, Inc., 2019b).
The main script simply starts instances of tcpdump (The Tcpdump Group, 2020) that
listen to the preconfigured ports and write the captured packets to PCAP files. The puck’s
data stream contains two kinds of packets: Data and Position (Velodyne LiDAR, Inc.,
2019b). These are delivered through distinct UDP ports. In the current setup, the two
kinds of packets are written to separate files for easier processing (see Section 3.3.2.1).
Even though UDP does not guarantee data integrity, the throughput of the network is well
within its capabilities and no issues, such as lost packets, were ever detected.

Due to its simplicity, the same approach of streaming data over UDP and capturing it with
tcpdump was chosen for the APX. A set of NMEA sentences36 containing the full pose
of the puck are transmitted from the APX to the NUC via UDP at 100 Hz. The APX can
provide the same information either as text (Applanix Corporation, 2019b, pp. 32-36) or
binary (Applanix Corporation, 2019b, pp. 36-42) data. While the latter uses less network
bandwidth and therefore space on the disk, and in the long run is in fact easier to parse
in software, the former was chosen because it is easier to read for humans. Addition-
ally, another set of timestamped messages also containing the full pose are transmitted
whenever the camera takes an image and triggers the APX. Each of these streams are
captured by their own tcpdump instances, which are also started from the main script.

35user datagram protocol
36For a brief explanation of NMEA sentences, see Appendix C.1
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The sensors and the tcpdump instances are set so that each kind of data (puck ranging
packets, APX position data, APX trigger data, etc.) uses their own UDP port and is
captured by tcpdump to their own files with descriptive names. To avoid the files becoming
exceedingly large, tcpdump creates new ones whenever the files reach a certain size.
The threshold size is set for each type of data individually and aims to create one new file
about every minute. This way, in the unlikely event of file corruption not all data would be
lost. Simple incrementing counters are used to arrange the files in the correct order.

The tcpdump instances dealing with the puck and APX data are closed only after landing,
when the operator manually terminates the main script. In contrast to the camera images,
the data of the puck and the APX does not require much disk space so the penalty for
terminating the acquisition several minutes after landing the UAV is low.

Camera data In contrast to the APX and puck, where no customization is needed once
the communication ports have been set up, the RGB camera requires setting some pa-
rameters before data acquisition. A separate program written in C++ and using the IDS
Peak SDK37 (IDS GmbH, 2020b) deals only with the camera and is invoked by the main
(Python 3) script. This camera program has to be called with the following command-line
arguments: target frame rate, maximum number of images to acquire, pixel format and
maximum exposure time. The frame rate and maximum exposure time are calculated by
the main script based on user input regarding the flying altitude, maximum acceptable
blur, flying speed and desired overlap. Besides user input, a text file containing the cam-
era and lens properties is used to derive these values. The pixel format and maximum
number of images are chosen by the main script based on camera capabilities, normal
flight duration and reasonable disk usage. After making the required settings, the acqui-
sition is started and the camera program saves the images received from the camera.

The camera uses a Bayer filter. So demosaicing (aka debayering) needs to be applied
in order to obtain RGB images. Even though demosaicing can be done both in camera
hardware and in software on the SBC (IDS GmbH, 2021c, 2020c), it is not executed in-
flight in order to preserve image quality, disk space and computing power. The image
data is saved with its full twelve-bit colour depth whenever possible. However, when
especially large overlap is desired, or the UAV is flying low and fast, the image quantity
increases dramatically, so the main Python script limits the colour depth to either ten or
eight bits per pixel to avoid capturing more than 50 GB of data per flight. While somewhat
arbitrary, this limit proved safe in our setup and so far all the images were acquired at
twelve-bit colour depth. It is also noteworthy that the space saving when using ten and
twelve bits per pixel is further aided by saving the data in packed formats, as defined by
EMVA (2019, pp. 12, 33–34).

37software development kit
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3.3.2. DATA PROCESSING

The software developed for data processing takes the files captured in Section 3.3.1 and
transforms them into usable formats.

In the case of the puck and APX, the final output files are LAZ point clouds. LAZ is a loss-
lessly compressed variant of the LAS file format (ASPRS, 2019). Both formats are open
and free to use and an open-source tool for converting between them is also available:
LASzip (Isenburg, 2013). Another advantage when compared to ascii38 file formats is
their binary nature, which enables far smaller file sizes and faster processing. Normally
tools that support LAS files, also work fine with LAZ ones, so the latter were chosen for
their even smaller size. The lidar processing steps are outlined in Section 3.3.2.1.

The RGB images are processed up to TIFF files (Adobe, 1992). This format was cho-
sen due to it wide-spread nature and open source support (Leffler et al., 2021). The
respective workflow is described in the Section 3.3.2.2.

3.3.2.1. Lidar processing
The point cloud generation pipeline consists of two stages. First, ascii point clouds are
created from the puck and APX data. This stage uses mainly in-house developed tools
written in Python 3 (Version ≥ 3.8.0). Next, the ascii clouds are converted to LAZ files
using LAStools (Isenburg, 2021).

Merging PCAP files The first processing step consists of aggregating the files corre-
sponding to each data stream. The mergecap tool from Wireshark (Combs et al., 2020)
is used to merge the multiple separated files into one PCAP file per data stream and flight.

APX PCAP files to CSV In the next processing step the APX observations are parsed.
Initially, these are stored in PCAP files, where the contents of the UDP packets are NMEA
sentences. For easier access to the data, the contents of these sentences are saved
to CSV39 files. Because sometimes the APX splits NMEA sentences across packets, a
state machine is used to ensure packets are complete before parsing them. Even though
multiple fields are recorded in the output files, only the following ones are used in later
processing steps: easting and northing in a projected CRS, geoid elevation, roll, pitch,
heading and time of the GNSS fix. This last piece of information is crucial, as it is later
used to align the APX and puck data-streams. The easting and northing are obtained
by reprojecting the longitude and latitude output by APX. This is done using the Python
bindings for GDAL40 (GDAL/OGR contributors, 2021).

Segmentation of flight lines Next, the CSV files are used to segment each flight into
individual flight lines. The aim is to extract sections of the flight where the aircraft moves in
a straight line with a rather constant speed, which usually correspond to the sections flown
by the autopilot. The start and end of these lines are then used to “cut” the files containing

38ASCII (American Standard Code for Information Interchange) is a standard for encoding text. In the
context of point clouds, it means the data (point coordinates and other attributes) is human-readable text.

39comma-separated values
40geospatial data abstraction library
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the puck ranging packets into smaller files, one flight-line each. To determine which parts
of a flight mission belong to a straight line, first each observation in the recorded data
is evaluated according to a few requirements. Then the continuous segments containing
only observations satisfying these condition are identified and those with a duration longer
than a certain threshold are considered to be the flight lines. “Cutting” the PCAP files is
done with the editcap tool from Wireshark.

In the current work, an observation is “good”, if: the UAV (1) flies at an altitude higher than
a certain threshold, (2) does not turn too quickly and (3) its velocity is within a particular
range. These are conditions that one would expect to be met during a planned-mission
flight. A visual aid of how the parameters are used to determine which observations might
belong to flight lines is shown in Figure 3.10.
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Figure 3.10: Use of flying height, heading difference and velocity to segment flight lines. Data
acquired during 15 minutes of flight time of the mission 2 in the Vechta flight campaign. Values
for Elevation, Heading difference and Velocity , as well as the valid ranges of the parameters are
shown, followed by valid and invalid flight lines. All y-scales are linear.

In Figure 3.10, the three curves represent the raw Elevation, Heading difference and Ve-
locity respectively. The three pairs of horizontal lines accompanying them show the range
where these variables are “good”. The light-shaded areas supplementing the Elevation
and Velocity curves show regions (in time), where the two variables are within the accept-
able range. The grey shading on the Heading curve is inverted: it shows discontinuities in
the Heading’s “goodness”. The six light-blue patches under the velocity curve show flight
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segments where all three parameters are good. Because these segments last longer
than a specific threshold, they are interpreted as a continuous flight line each. The last
row of light-orange patches shows segments of the flight that were flight-lines candidates
but were discarded because their duration was too short. The following paragraphs show
how the “good” ranges of each parameter were quantified and identified.

The elevation threshold depends on the parameter h (h for height) and is computed as
a value that varies between the minimum elevation in the dataset when h = 0 and the
maximum one when h = 1. These extremes normally correspond to the take-off point and
to the target altitude, so this parameter allows to easily disregard data captured too low.

To assess the second condition, the forward finite difference (∆) of the aircraft’s heading
(y(t)) (y for yaw) is computed as defined in Equation 3.9.

∆τ [y] (t) = y (t + τ) − y (t) (3.9)

Where τ represents the sample spacing and in the current context it is ten milliseconds—
the time resolution of the APX data. Since the heading relative to north varies between
0° and 360°, naturally there are discontinuities when the UAV’s nose passes an imaginary
line pointing north. These would be picked up by the algorithm and interpreted as a
break in the flight line. Data collected on a north-bound course would be susceptible to
this kind of error. To prevent detection of false flight-line breaks, the heading is first made
continuous by adding ±360° when the northward line is crossed. To get back to the original
heading, one would compute the continuous heading modulo 360°. From the perspective
of the heading, an observation is said to be good if its heading’s forward finite difference
is within y standard deviations from the median of all headings’ finite differences.

The next condition to be checked is whether the velocity does not deviate too much from
the median. This is implemented with a factor v > 1 (v for velocity ), such that all velocities
contained between median velocity divided by v and median velocity multiplied by v are
considered “good”. This simple thresholding keeps the most frequent velocity—which is
expected to be the one set in the mission planner—and (usually small) deviations from it.

The results of the segmentation based on elevation, heading continuity and velocity are
aggregated with a logical-and function. Then continuous segments are extracted from
the observations satisfying all three criteria. Next, the segments with a duration longer
than s seconds are kept.

In contrast with the rest of the point cloud generation procedure, that always runs auto-
matically, this step can also be run interactively. The mode is chosen by a command-line
argument passed to the script. In automatic mode, the default values for h, y, v and s are
used. When using the interactive mode, the user visually assesses the result obtained
with the default parameters and can adjust one or more of them via the command line
until an acceptable result is obtained.
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Whichever mode is used, a plot of the lines is saved to disk after each iteration. The pa-
rameters used are saved in the title of the figure, so the process is reproducible. An ex-
ample of such a plot is shown in Figure 3.11.
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Figure 3.11: Result of flight-lines segmentation: Mission 2 from the Vechta campaign. The East-
ing and Northing are given in the WGS 84 / UTM zone 32N CRS (EPSG:32632). h, y, v and s
refer to the “elevation (height) threshold”, “heading (yaw) deviation tolerance”, “velocity factor”
and “time parameter (seconds)” that were used for the current segmentation.

The flight-line segmentation script is run as a batch process for all flight missions at once.
However, in the interactive mode, the parameters are adjusted on a mission level. In some
cases, multiple iterations per mission might be needed for getting the right values, so
multiple plots are saved. Both in automatic and interactive mode a consistent numbering
scheme (1,2, . . . ,N ) for all the flight-lines of a flight campaign is used. Finally, after the
user finds setting fitting each mission, the editcap utility from Wireshark is used to split
the puck files into flight lines. The tool is called automatically with the start and end points
of the flight-lines from the last plot of each mission. This way, no extra files are created
for the unsuccessful iterations preceding the last one. The resulting files are named
line_n.pcap, where n ∈ [1,2, . . . ,N]. This naming scheme is preserved throughout the
successive processing stages.

Puck PCAP files to LAZ point clouds Finally the puck data files, which were divided by
flight line in the previous step, are combined with the APX observations to derive the point
clouds. This is accomplished by a Python 3 script that fuses the data from both sensors
to create georeferenced ascii point clouds, then automatically calls LAStools (Isenburg,
2021) to convert them to the LAZ format and remove obvious noise.

The puck’s readings are georeferenced with the APX positioning data by performing the
calculations outlined in Section 3.1. The APX data is read from the prepared CSV files
with the help of the pandas package (Reback et al., 2021). The data within the PCAP files
is accessed with the Scapy package (Biondi et al., 2020). To interpret the lidar readings,
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a parser based on the puck data specification (Velodyne LiDAR, Inc., 2019b, pp. 53-68)
was implemented.

Once the data is read into the current script, it is converted to NumPy arrays. The NumPy
package is used extensively throughout the codebase, as it offers powerful tools for ef-
ficient and vectorized calculations. Moreover it features an intuitive and comprehensive
syntax for seamless manipulation of N-dimensional arrays (Harris et al., 2020). Among
the first things, a few simple checks are done and data is decimated considerably: all
returns that are missing or too close (likely because of hitting the UAV) are discarded.

The calculations needed for georeferencing the lidar returns have to be performed for
each lidar measurement (see Section 3.1). However, there are ≈ 290 thousand laser re-
turns per second, and only 100 puck pose estimates. Therefore, the spatial.interp1d
method from the SciPy package (Virtanen et al., 2020) is used to train interpolation func-
tions on the APX data. They take a UTC-timestamp as input and provide the full pose of
the puck (roll, pitch, true heading, easting, northing and elevation) as output. By calcu-
lating the precise timestamp of each lidar return and feeding it into the six interpolation
functions, full pose estimates are obtained for each point.

The structure of the data arrays is such that the operations defined in Section 3.1 can
be performed on all laser returns simultaneously. For instance, to rotate a set of co-
ordinates p0,p1, . . . ,pn around the axis y by their corresponding angles θ0, θ1, . . . , θn,
the numpy.matmul routine is used. This function performs matrix multiplication, even for
stacked matrices and vectors, as is the case in this paper. Figure 3.12 shows how the
data is arranged conceptually in stacked matrices so that NumPy performs vectorized op-
erations on them.
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Figure 3.12: Visualisation of stacked-matrices multiplication. In this example, the points
p0,p1, . . . ,pn with coordinates (x0, y0, z0), (x1, y1, z1), . . . , (xn, yn, zn) shown on the right are mul-
tiplied by their corresponding rotation matrices about the y axis (shown in the middle) to obtain
the new points q0,q1, . . . ,qn with coordinates (u0, v0,w0), (u1, v1,w1), . . . , (un, vn,wn) shown on
the left. The colours of each slice in the data arrays show the scope of individual multiplications.
The symbol ‘⊗’ is loosely used to represent parallel multiplication of multiple matrix-vector pairs.

In practice, the calculation is not performed on all points at once. Instead a loop is used
to iterate over the data and process about ten seconds of observations at once. This way
all the intermediate array are created when needed and have a much smaller memory
footprint. The iterative processing still takes advantage of the vectorized calculations,
georeferencing over seven million points per pass, but ensures the algorithm can still run
on computers with modest RAM41.

41random-access memory
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After every loop, the results are saved to intermediate text files. When all returns from a
flight line are processed, the intermediate files are merged into one text file per flight-line.
Next the txt2las, lasinfo, las2las and lasnoise command-line utilities from LAStools
(Isenburg, 2021) are called to convert the text point clouds to the LAZ format, ensure that
the files are up to standard (ASPRS, 2019), the correct CRS is saved in the metadata
and obvious noise (such as lone returns from birds) is removed.

Besides crucial information, i.e. coordinates for every point, LAZ files may contain a
myriad of other fields, such as GPS timestamp, angle of laser beam from azimuth (across
the flight path) and return intensity (ASPRS, 2019). In order to maximize the information
content of the files and potentially enable sophisticated workflows, these fields are also
populated in the output files. Additionally, a few non-standard properties, such as angle
along track, are calculated and stored in the “extra bytes” fields.

Such information may prove useful in certain applications. Since it does not cost much
computing power or time, it is included in the result. However the LAS specification also
contains fields that do not really apply to UAV-borne sensors with 360°FOV. One such
property is the “Scan Direction Flag” which is only meaningful for lidar units with oscillat-
ing mirrors. The fields that do not apply to the puck are not populated. Moreover, even
though the LAS format has a field named “Scanner channel”, it cannot be used to dis-
tinguish between the puck’s 16 channels, as the field uses two bits, and as a result can
only hold four distinct values. Instead a new field “LaserID”, which is consistent with the
manufacturer numbering scheme, is created.

Once the LAZ point clouds are produced and the most obvious noise is filtered out, the
processing of the lidar data is concluded. The result is a collection of LAZ point clouds,
divided by flight line, which can be fed into normal lidar processing workflows.

3.3.2.2. Processing of RGB data
As explained in Section 3.3.1, the camera acquires mosaicked images, which are stored
as raw bytes. This section discusses how these raw files are transformed into a usable
format, such as TIFF. Most processing is done with Python 3 (Version ≥ 3.8.0). Two
workflows have been developed for demosaicing the raw images. One relies solely on
the OpenCV library (Bradski, 2000). The other chains it with own software based on the
IDS Peak SDK (IDS GmbH, 2020b). The output of both workflows is TIFF files, whose
metadata is then added with ExifTool (Harvey, 2019).

In the first workflow, the script simply reads the raw files into NumPy arrays and uses
OpenCV’s built-in demosaicing function. Then it usually truncates the colour depth to eight
bits. Finally the same library’s image writer is used to save the files to disk.

This approach proved to lead to poor image quality. While not apparent at first sight,
zooming in until individual pixels became visible revealed images that were blurry and
riddled with noise. To establish whether these issues came from the images themselves
or were introduced by the demosaicing algorithm, the camera manufacturer’s SDK (IDS
GmbH, 2020b) was used to process a few images. An example where an image was
processed with both libraries is provided in the Figure 3.13.
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(a) Demosaicked with OpenCV (b) Demosaicked with IDS SDK

(1) Original crop. 800x600 pixels.

(2) Crop of upper rectangle. 176x120 pixels.

(3) Crop of lower rectangle. 90x60 pixels.

Figure 3.13: Demosaicing result: OpenCV vs. IDS SDK. Left side (a.1, a.2 & a.3): OpenCV. Right
side (b.1, b.2 & b.3): IDS SDK. Top: crop out of an original image (≈ 20% of the initial resolution).
Middle: crop out of a tussock (delineated by a white rectangle in the top image). Bottom: crop out
of a flower (delineated by the lower white rectangle in the top image).

Looking at Figure 3.13,42 practically no difference can be detected between the outputs
of the two libraries, as long as not zooming in too much. However, when zooming in
excessively, more defects are visible in the version produced with OpenCV, compared to
that output by the IDS SDK. Both libraries have a fair amount of noise, most of which
is likely due to the high gain settings (ISO ≈ 600). Nonetheless, it seems to be more
pronounced in the version produced with OpenCV. Some pixels look extremely red or blue,
both of which are very far from the true colour of the scene. The edges look noisier

42It is recommended to view the electronic version of this Figure, as no faithful reproduction of the artefacts
can be guaranteed in print.
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overall, but the versions on the left seem even more extreme. Furthermore, the border
of the bright patch in the bottom row looks especially full of imperfections. To the naked
eye, the images on the left, particularly the one in the middle row, also seem blurrier.

Based purely on this qualitative assessment, it was concluded that the demosaicing algo-
rithm used does make a difference and the one employed by the camera manufacturer’s
SDK seemed to perform better for this set of images. A similar comparison was made be-
tween the IDS SDK and OpenCV’s edge-aware demosaicing. The latter did not yield better
results than the default variant. Consequently, in order to preserve higher image quality,
a second demosaicing workflow using the IDS SDK was implemented.

The proposed workflow was very simple: using the IPL43 component of the IDS SDK,
read the raw image data into a buffer, perform the demosaicing and save the result to a
normal image file. However, this library only supports reading data from PNG, BMP or JPEG
files. Therefore, an initial step of saving the image as a greyscale PNG with OpenCV was
needed. Moreover, it was determined that the library only supports PNG files containing
a specific PNG tag that so far could not be written with OpenCV or ExifTool – a library
specialized in editing image metadata (Harvey, 2019).

The problematic tag (sBIT) specifies the number of significant bits used to represent the
colour data. For example, images with 12 bits colour depth have to be stored as the
upper 12 bits in a normal 16 bit image. This is because colour depths between 9 and
15 bits may only be represented as 16 bits, i.e. two bytes (W3C, 2003, Table 11.1) The
sBIT tag can then be used to specify whether the first nine, ten, or the whole 16 bits of a
two-byte integer are significant. For PNG viewers, the absence of this tag does not seem
to be a problem. However, in order to conform to the requirements of the IDS IPL (IDS
GmbH, 2020a), the tag had to be used. Because the tag could not be set with traditional
metadata editing techniques, TweakPNG (Summers, 2014) was used to generate a correct
tag and find out where in the file it belongs. This information was then used to insert the
corresponding bytes into the files produced by OpenCV.

Next, another quirk of the IDS IPL was found: while only big-endian byte order may be
used to encode image data in PNG files (W3C, 2003, Section 7.1), IDS IPL was doing
the opposite. Meaning if a mosaicked PNG file were to be saved directly using the cam-
era’s SDK, its data would be all scrambled up and normal image viewers could not display
it properly. However, this is the format that the IPL expected, so the processing script
had to save the images with the wrong byte order to be able to use the IDS IPL’s de-
bayering algorithm. An extra step was added for putting the data in the correct order
after the demosaicing. This bug was later confirmed by the camera manufacturer (IDS
GmbH, 2021a) and since it was fixed in a later version of the IPL (IDS GmbH, 2021b),
the software was changed so that the byte swapping can be bypassed.

Then, the resulting image data is saved to the TIFF file format with only the upper eight
bits. Regarding the lower bits, it was decided to carry them throughout the previous cal-
culations in order to preserve accuracy in the least significant bits of the most significant
byte, but they are discarded in the last step to save disk space.

43image processing library



31

Figure 3.14 demonstrates both described workflows. Two alternative paths are shown for
the IDS IPL workflow, to account for the software version used.

Demosaic
OpenCV

Raw bytes

Save PNG
OpenCV

Demosaic
IDS IPL

a)

b)

Save TIFF
OpenCV

Swap bytes Swap bytes

IDS IPL v < 1.2

Raw bytes
Truncate and

save TIFF
OpenCV

Figure 3.14: Workflows for demosaicing of RGB images. (a) Straightforward method using only
OpenCV. (b) More convoluted process relying also on the IDS IPL. The second approach usually
led to (subjectively) fewer artefacts and sharper images.

Finally, the timestamps of each image as saved by the APX are used to calculate the
position and orientation of the camera. The georeferencing of the camera centre is done
similarly to that of the lidar returns, as outlined in Section 3.3.2.1. The position (latitude,
longitude and elevation), along with other metadata, such as ISO setting, lens aperture,
integration time, etc. are written to the resulting files using ExifTool (Harvey, 2019).
The orientation however is not part of the standard tags and storing it in the metadata
is inconsistent among manufacturers. Therefore, it is saved as a CSV file that can be
imported in e.g. Agisoft Metashape (Agisoft LLC, 2021, pp. 78-79)

3.3.2.3. General considerations for data processing
A number of optimizations were implemented to speed-up the calculations outlined in
Sections 3.3.2.1 and 3.3.2.2. For instance, parallelization was used as much as possi-
ble. Significant gains were obtained due to Python’s multiprocessing module. Besides
taking advantage of multiple CPU cores, this module enabled the use of SharedMemory
objects for keeping the RAM footprint of the processing low. The SharedMemory objects
were introduced in Python version 3.8.0 (Python Software Foundation, 2019), hence the
minimum required version for the processing software outlined in this section.

Because the processing of both the lidar and RGB data creates intermediary files, disk-
IO becomes a bottleneck, especially thanks to the parallel processing introduced above.
To combat this issue, a small portion of the RAM is normally used to produce a memory-
mapped disk, so the intermediate disk-IO is minimized.

3.3.3. DATA VISUALIZATION

The acquisition software described in the Section 3.3.1 was designed to be started from
the NUC’s command line just before the UAV takes off for the flight. An SSH connection
from a laptop is normally used to start the script via a temporary network connection
between the two computers. This connection is closed during the flight, as cables cannot
be used and a Wi-Fi connection might interfere with the UAV’s remote controller, which
operates in the same frequency bands. As a result, shall the acquisition script or one of
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its children fail during the flight, the operator would have no way of knowing and the flight
would be al least partially wasted.

This issue was solved with one the features of the DJI M600 Pro. It has an HDMI input
on the UAV, from where data is streamed via a 2.4 GHz radio to the remote controller,
where it is displayed on a tablet. To the computer connecting to the input on the UAV side,
the HDMI connection is indistinguishable from that of a normal monitor. For all practical
purposes, the tablet can be regarded as just a display connected directly to the NUC.

To make use of this feature, a GUI44 was programmed with Python 3 (Version ≥ 3.5.0)
for displaying the status of the scripts running on the NUC. A screenshot from this GUI is
shown in Figure 3.15.

Figure 3.15: Screenshot from the GUI, showing one of the three most recent images. The photo’s
histogram and acquisition settings are shown on the right.

The GUI starts automatically when the NUC boots up. Initially it displays some general
information about the system, as well as the time, so it does not appear static or frozen.
As soon as it detects the acquisition script being started, it switches to in-flight mode,
where it alternates between four screens every two seconds or so. On three of the in-flight
screens, it displays the last three acquired images, each accompanied by a histogram
and its acquisition settings, as shown in Figure 3.15. This way, the operator not only sees
that the camera is working, but can also assess the image quality and the front overlap
between images. The last screen displays general diagnostic information of the NUC:
disk usage and free space available. It also shows the quality of the IMU and GNSS
data, as reported by the APX. In between flights, the GUI switches back to the initial view.

Data acquisition and processing are not affected by the GUI. So if a UAV without an
HDMI input were to be used, the GUI would simply not start and nothing would change
regarding data acquisition and processing.

44graphical user interface
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4. BORESIGHT CALIBRATION

So far, the alignment angles between APX, puck and UAV (aka boresight angles) were
presented as multiples of 90°. In practice, small mechanical imperfections lead to devia-
tions of a few degrees from the designed angles. It is mandatory to measure and account
for these deviations (aka boresight errors), as they lead to inaccuracies in georeferencing
of the point clouds. This process is called boresight calibration.

One could argue that the precise angles between all three components (APX, puck and
UAV) have to be measured perfectly for a successful boresight calibration. But in reality
only the relative alignment of the puck to the APX is relevant. The APX is rigidly mounted
to the puck and does not need to be unmounted between flight campaigns. However they,
together with the rest of the system, are attached to the UAV using bolts and a sliding
rail mechanism and usually get unmounted between flight campaigns. This way the UAV
can be used with other sensor payloads. But it also means that the boresight errors
between system and UAV can change from flight to flight. Therefore the UAV reference
frame considered in Section 3.1 is just a construct that roughly aligns with the real UAV
frame. This imaginary frame is defined by the transformations from the APX’s frame as
presented in Figure 3.2. So it is also part of the rigidly–mounted system, as it always
moves with the APX. Therefore, for successful boresight calibration, it suffices that the
puck’s alignment to this imaginary frame is measured correctly.

In the present work, the boresight rotations are applied to the puck data after it is roughly
brought into the imaginary UAV frame (Equation 3.5) and before applying the real-world
roll, pitch and heading angles measured by the APX (Equation 3.6). This particular step
in the data processing was chosen because the boresight angles applied at this stage
are directly interpretable as roll, pitch and yaw misalignment between the puck and the
APX. Also, for consistency with the previous sections, the same order of rotations (roll
followed by pitch then yaw) was implemented for the boresight corrections.

The following sections describe the methods used to measure the boresight errors, the
current results and give pointers to further work that can be done to improve these.

4.1. METHODS AND MATERIALS

When capturing lidar data with a miscalibrated system, the data appears distorted. This
is because the position of each point is miscalculated. While the errors might not be
apparent within one flight line, they are usually easiest to spot when comparing two lines
flown in opposite directions. This is because the boresight errors lead to rotation of
measured points in a particular direction relative to the system, so when facing opposite
ways, the rotations are also in opposing directions, thus the errors get compounded. This
property is often used for measurement of boresight misalignment. Reliable detection of
features or points from different flight lines is a first step for boresight calibration.
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To simplify the task of accurately detecting the same points in adjacent flight lines, a set
of GCPs45 were designed. These were prepared by applying retro-reflective foil to rigid
plastic sheets. Retro-reflective materials have the property of reflecting a large propor-
tion of the incident light back to its source. This is extremely useful for active sensing
technologies, such as lidar, where a pulse of light is sent by the sensor and reflected
by the environment. Because the lidar unit used reports not only distance to measured
points, but also the intensity of the laser return, it is possible to extract the GCP-returns
by looking for the brightest points in a point cloud. The use of retro-reflectors as GCPs
was directly inspired by the work of Wallace et al. (2012).

A variety of lidar-GCPs was prepared. The plastic base sheets measured approximately
30 by 40 cm and the retro-reflective foil had sizes varying between 10 and 25 cm. The foil
was applied as squares or crosses. Initially it was planned to assess the performance of
the various shapes and sizes, but this comparison has not been carried out yet.

At the centre of each GCP, a hole was drilled for easy placement with survey nails. This
way the position of every GCP can also be reliably measured with RTK-GNSS devices.
Examples of the ground control points used can be seen in Figure 4.1.

Figure 4.1: Ground control points. Left: multiple patterns and sizes. Right: GCP in the field.
Measuring its position with an RTK-GNSS device.

4.1.1. BORESIGHT CALIBRATION ALGORITHM

A procedure was developed for finding the boresight angles. The following summarizes it
and the successive paragraphs provide more details.

1. Identify the high-intensity returns in the raw puck data;
2. Filter the results using the known locations of the GCPs;
3. Extract the relevant pose data from the puck and APX files for each point;
4. Optimize the boresight angles:

(a) Assign each return to its GCP;
(b) Minimize the distance between points belonging to the same cluster.

In the first step, point clouds were generated using the methods described in Section 3.3.2.1,
but only the returns with intensity > 100 were kept, as these were likely to be coming form
retro-reflectors (Velodyne LiDAR, Inc., 2019b, p. 32). While all the points identified this

45ground control points



35

way closely resembled the actual positions of the GCPs in the Niederkamp campaigns,
there were numerous false positives in the Vechta and Duisburg campaigns. This is why
the second step was necessary. Here a simple spatial query was used and points sit-
uated more than x meters away from the GCP positions as recorded with a GNSS unit
were discarded. The threshold was set manually for each flight campaign, by inspecting
the results and choosing a value that would cut out all the false negative returns and
impact as few true positives as possible.

Next, the surviving points were reidentified in the original puck files based on their GPS
timestamp, which served as a unique identifier. Based on the spherical coordinates of the
points in the puck frame, their Cartesian coordinates in the UAV’s frame were calculated.
Also using the timestamps, the northing, easting and altitude of the system, as well as
the roll, pitch and heading angles were retrieved from the APX files. When available,
the heading errors calculated by Agisoft Metashape Pro (Version 1.7.2) (Agisoft, 2021)
were also collected. These parameters were aggregated and saved in a single file.

The fourth and final step commenced with reading the file generated earlier. Based on
distances of the returns from the true positions of the GCPs, they were assigned to differ-
ent clusters, so that all returns originating from the same point GCP belonged together.
Then a routing that georeferenced the points as a function of boresight corrections was
developed. The output of the routine quantified the spread of points within the clusters.
The metric used was either mean, median or maximum Euclidean distance across all de-
tected clusters. The function was used individually to identify trends and check results but
most importantly, it was subjected to an optimization approach. This was implemented
with the optimize module from the SciPy package (Virtanen et al., 2020) and searched
for angles that minimized the intra–cluster spread. Methods looking for either global or
local minima were employed.

Because the results were inconsistent across flight campaigns, the procedure was re-
peated for each campaign: Niederkamp 1 and 2, Vechta and Duisburg.

4.1.2. REFINEMENT OF HEADING WITH PHOTOGRAMMETRY

The algorithm presented so far treated the errors as constant over time. This is not the
case if the IMU is drifting, which is a common occurrence and has often been remediated
by using cameras rigidly mounted to the payload. For instance, Wallace et al. (2012) used
an RGB camera and SfM techniques to correct IMU errors in a UAV-borne lidar system.
Suomalainen et al. (2014) had a similar approach, where the camera orientation obtained
from SfM with a low update frequency was taken as truth and high update frequency
GPS-IMU data was used to interpolate the instrument pose in between camera frames.

In order to verify whether the potential errors can at all be detected with the current cam-
era setup, Metashape was used to process images taken during the Vechta campaign.
The position (longitude, latitude, elevation) of each image shot was calculated using the
GNSS-IMU data and the lever arm distances from the puck centre to the camera cen-
tre. Also the orientation of each capture (roll, pitch, heading) was calculated assuming
perfect alignment between camera and puck coordinate systems (See Section 3.3.2.2 for
details). The position was added to images as metadata, which was read be Metashape
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and the orientation was imported into the software as a CSV file. Thus Metashape had the
initial pose for each capture. Then it adjusted the pose of each camera shot by matching
features in adjacent images and optimizing both the internal and external camera ori-
entation parameters. Afterwards it calculated the errors between the input angles (from
the CSV) and the output ones (calculated by Metashape). These errors were analysed to
determine whether they can be used to compensate for a potential IMU drift.

First, the errors computed by Metashape were plotted for each of the three angles (roll,
pitch and heading) and 23 flight lines. Then, for each of these, a simple linear regression
line was fitted. Because obvious trends could be observed but there were also outliers
not fitting these general relationships, a low-pass filter was applied to each sub-dataset
to accentuate these general trends. The raw errors, as well as the filtered ones and the
linear regression lines are shown for each angle and flight–line in Figure 4.2.

As stated in the headers for each of the subfigures, the mean errors were: −0.11° for
heading, −0.09° for roll and−0.65° for pitch. These are mainly an indication for the general
misalignment between puck and camera and their exact value would only be relevant
for computing the accurate camera orientation. However, the interesting parts are the
standard deviations of these errors: only 0.03° for roll and pitch, but an entire 0.12°
for heading. Assuming this is not a fluke, this might mean the heading of the system
changes significantly even within a flight line and this time–dependent error can indeed
be measured with the RGB camera.

Although the trends seen in the heading behaviour are clearly not just linear, sometimes
changing direction even within a flight line, the high and significant R2 values accompany-
ing them suggest the heading errors are quite time–dependent. Which cannot be said of
the roll and pitch errors. The distribution of the R2 & p values and of the absolute values
of the regression coefficients for the considered errors are shown in Figure 4.3.

It follows that the heading drift seems to be real and measurable with the RGB camera.
This is not the case for roll and pitch, whose variation is rather random and not time–
dependent. Therefore, only the correction of heading with SfM was considered further.
To assess whether the boresight calibration can be improved with this refinement, the
low-pass data was used to create look-up tables which were then used by the boresight
algorithm to correct the heading. The boresight calibration of the Vechta data was done
twice: once with and once without the heading corrections.

4.2. RESULTS AND DISCUSSION

A few minimization algorithms were used and while all of them converged to almost iden-
tical results, the Nelder–Mead method (Nelder & Mead, 1965; Gao & Han, 2010) usually
found the most plausible angles. Therefore, the results of this method are normally pre-
sented in this Section. The only exception occurred when considering a dataset combin-
ing multiple flight campaigns. Then the Powell method (Powell, 1964) yielded the more
plausible results. When minimizing either the mean, median or maximum error, the re-
sults varied by ≈ 0.2°. Still, only the results obtained when minimizing the maximum error
were considered in this Section, as it was reasoned that focusing the least forgiving met-
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Figure 4.2: Pose error over time – Missions 2–4 in Vechta campaign. Raw values are plotted
as dots. Low-pass filtered values are overlaid as curves. The straight black lines show the fitting
linear models. y-axes are in degrees and x-axes — in seconds from the beginning of the flight
line 7. R-style significance codes for each R2: 0 *** 0.001 ** 0.01 * 0.05 ’ 0.1. No symbol for p > 0.1.
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Figure 4.3: Characterization of Metashape–detected boresight errors: Distribution of the (a) coef-
ficients of determination, (b) p-values and (c) regression coefficients† for the linear models.
† The absolute values are used for the latter, to indicate whether a linear relationship could be
identified at all, not its sign (c). The strengths and significances of these relationships can be
assessed based on the distribution of R2 (a) and p respectively (b).

ric should suppress the errors the most. Results of the per–mission maximum boresight
error minimization are presented in Table 4.1. Figures 4.4–4.8 demonstrate the maximum
error as a function of the three angles for the last five columns from Table 4.1.

Table 4.1: Results of boresight calibration for each mission. Results were obtained by minimizing
the maximum error. Columns one–five: Nelder–Mead method; column 6: Powell method. ε
refers to distances between points belonging to the same GCP. Last row shows the number of
observations and the number of GCPs identified.
* Vechta without yaw refinement; † Vechta with yaw refinement.
‡ Combined: Vechta with yaw refinement, Niederkamp 2 and Duisburg.

Vechta* Vechta† Niederkamp 1 Niederkamp 2 Duisburg Combined‡

Roll 0.992 0.920 0.892 1.077 0.943 1.082
Pitch 0.122 0.141 0.231 0.246 0.180 0.297
Yaw −0.276 −0.337 −1.918 −1.775 −1.515 −1.117

Max. ε 0.400 0.373 0.311 0.644 0.413 0.922
Mean ε 0.152 0.139 0.180 0.293 0.155 0.310

Median ε 0.143 0.136 0.167 0.306 0.155 0.254
Nobs/NGCP 209/19 209/19 9/2 81/20 1135/10 1425/49

Figures 4.4–4.8 have three columns and three rows each. The columns correspond to
one of the angles being fixed to its optimal value and the other two varying across a
certain range. Each successive row zooms in on a smaller search space for the two
variable angles: 3 × 3° in the first row, 0.3 × 0.3° in the second row and 0.08 × 0.08° in the
last row. The zoom-in areas are indicated by red squares in the two upper rows and the
optimal solutions found with the Nelder–Mead method are marked with red crosses in the
last rows. Each subplot’s colour bar shows the range of the maximum intracluster error.

An exception was made for Figure 4.8: the solutions obtained with the Nelder–Mead
method were suboptimal, and were still indicated by red crosses, but in the second row
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Figure 4.4: Boresight error for various angles – Vechta with yaw refinement.
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Figure 4.5: Boresight error for various angles – Niederkamp 1.

instead of the last one. A more plausible result was instead obtained with the Powell
method (Powell, 1964). These minima are shown with green asterisks in the last row.
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Figure 4.6: Boresight error for various angles – Niederkamp 2.
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Figure 4.7: Boresight error for various angles – Duisburg.

There are a few observations to be made from Figures 4.4–4.8 and Table 4.1. In principle,
there are ranges of angles that significantly reduce the maximum error for a specific flight
campaign. Also, using the optimize functions from the SciPy module is an effective way
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Figure 4.8: Boresight error for various angles – Combined.

to find such combinations of angles. However, combinations that minimize the metric for
one campaign are far from ideal for others. The disagreement between the per campaign
solutions reached ≈ 0.18° in roll and pitch and ≈ 1.6° in yaw. While the residual errors
in roll and pitch are not as drastic as those in yaw, the combination of their individual
inaccuracies can still lead to a horizontal positioning error of ≈ 0.5 m at a range of 100 m.
There are a few reasons why the current approach is flawed.

First of all, the size of the retro-reflective panels is comparable to the error that has to be
minimized. A laser return from a panel is currently trated as one point. When in fact, the
laser could be striking anywhere on the 10 × 10 to 25 × 25 cm surface of the panel. This
issue is further compounded by the size of the laser footprint itself, which is anywhere
between 8 × 5 cm at a distance of 20 metres and 29 × 16 cm at 100 metres. And when the
laser hits any surface at an angle, one dimension of the pulse grows with the inverse of the
cosine of the off-nadir incidence angle. So in fact it is fairly large laser footprints landing
on comparably large panels. Therefore treating their interaction as a point while trying
to minimize distances between these “points” on a comparable spatial scale inherently
leads to errors. The current size of the GCPs was chosen as a compromise between the
accuracy of the positioning and the chance of them being hit by lasers. Evidently the first
objective has not been satisfied and a different strategy should be employed. Potential
improvements are discussed in Section 4.3.

The errors were so far assumed to be random, in which case increasing the sample size
would cancel them out. However, even with the 1135 observations of the 10 GCPs in the
Duisburg mission, the mean error could not be brought under 15 cm, which corresponds
to ≈ 0.36° of error given the flying height of25 m. The error in the Niederkamp 2 mission
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(at 90 m height) corresponds to ≈ 0.19° and in Vechta (at 20 m height) – to ≈ 0.40°. It is
tempting to state that the error decreases with increasing height, but this cannot be said
with confidence yet, because of the low sample sizes in all missions except for Duisburg.

To verify how the current results reflect on the quality of the point clouds, a test was
conducted with the data from the two Niederkamp campaigns and their respective cali-
bration results. Ground points from two opposing flight lines (1 and 2) were extracted and
used to generate a DTM46 for each of the two flight lines. Both operations were achieved
with LAStools (Isenburg, 2021). Next, the difference of the two DTMs was calculated
using QGIS 3 (QGIS Development Team, 2021). The above procedure was repeated
three times for each of the two campaigns considered: no boresight calibration (Original),
optimal solution for Niederkamp 1 as per Table 4.1 (Solution 1) and optimal solution for
Niederkamp 2 (Solution 2). The distribution of errors between the two DTMs for each of
the six cases is shown in Figure 4.9.
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Figure 4.9: Boxplots of DTM differences. (a), (b) & (c) show data from the flight campaign
Niederkamp 1. Meanwhile (d), (e) & (f) present data from the flight campaign Niederkamp 2.
Plots (a) & (d) were obtained without applying any correction; plots (b) & (e) – by applying the
solution computed for Niederkamp 1 (−1.918° yaw, 0.231° pitch and 0.892° roll); plots (c) &
(f) – by correcting the boresight angles with the solution found for Niederkamp 2 (−1.775° yaw,
0.246° pitch and 1.077° roll).

In Figure 4.9 all means are close to zero, but the standard deviations do change consid-
erably with different corrections. While both sets of angles lead to a substantial decrease
in the range of errors, those from Solution 2 perform the best. This was to be expected,
since 20 GCPs were observed 81 times in the Niederkamp 2 campaign, in contrast to just
two GCPs observed nine times in the Niederkamp 1 campaign. Still the errors were not
decreased sufficiently in any of the iterations. This shows on one hand that the general

46digital terrain model
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trend has been correctly captured in the Solution 2, since it could be applied to datasets
which were not “seen” at the optimization stage. But on the other hand, the residual error
(17–21 cm even with the superior method) shows that the currently used boresight angles
do not perform well enough yet and should be further refined.

Another view of the data from Figure 4.9 is offered in Figure 4.10, where the difference of
the two DTMs is shown for the uncorrected data vs data corrected with Solution 2.

DTM 1 - DTM 2

Height difference between digital terrain models (DTMs)
obtained from flight lines 1 and 2

(a) 30.11. Original

DTM 1 - DTM 2 DTM 1 - DTM 2

(b) 30.11. Solution 2

DTM 1 - DTM 2

(c) 18.12. Original (d) 18.12. Solution 2

Figure 4.10: Difference between DTMs generated from flight lines 1 and 2. (a) & (b): Campaign
Niederkamp 1. (c) & (d): Campaign Niederkamp 2. (a) & (c): Data without any correction. (b) &
(d): Data corrected with these angles: −1.775° yaw, 0.246° pitch and 1.077° roll.

It can be seen in Figure 4.10 that while considerable misalignments between oppos-
ing flight lines remained even after boresight correction, their magnitude became much
smaller and the distribution – more random, the initial cross-track gradient being consid-
erably suppressed.
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4.3. CONCLUSION AND OUTLOOK

The present chapter demonstrated a method for lidar boresight calibration using retro-
reflective panels and a distance minimization approach. While a general range of appro-
priate boresight correction angles had been identified, the precise value of the boresight
misalignment of the system have not been measured to a satisfactory degree yet.

A number of improvements could be made to the current approach. For once, a dedicated
boresighting campaign should be undertaken. The terrain to be surveyed should be open
and easily accessible. Numerous GCPs must be used, all spaced throughout the area.
Their size has to be decreased, maybe to just 2–5 cm, because as shown in Appendix B,
with higher flying altitudes the chance to hit (even small) targets increases considerably.
Furthermore, special attention should be given to accurately surveying the targets and
potentially minimizing the distances not between pulses but from pulses to targets.

Considering the current results for Vechta, Duisburg and Niederkamp 2 campaigns (Ta-
ble 4.1), the optimal roll and pitch angles do seem to change with height. Since lever-arm
measurement errors could manifest themselves as height-dependent systematic bore-
sight errors, it is imperative that the current lever-arm measurements between all system
components be thoroughly checked and if necessary, corrected.

Shall the approach still not yield satisfactory results, other algorithms must be used. For
instance, identifying coplanar points (e.g. roofs) and adjusting the boresight angles such
that the planes match proved to be an effective strategy for boresight calibration of UAV-
borne lidar systems (Wallace et al., 2012; Guo et al., 2017).
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5. USE CASE 1. Vechtaer Moor : TOWARDS MICROFORMS DETEC-
TION IN A REWETTED CUT-OVER BOG

Peatlands are of uttermost ecological importance, featuring unique habitats and biodiver-
sity. They also provide a myriad of ecosystem services, such as water purification, flood
mitigation and carbon storage (R. Andersen et al., 2017). While intact peatlands function
as net carbon sinks, they turn into major sources of greenhouse gases when dried up
(Joosten & Couwenberg, 2008). Up until the 1970s, peatlands (especially bogs) in Cen-
tral Europe had been intensively dewatered and cut for extending agricultural and forestry
areas, as well as for peat production, which was used in potting mixes and as solid fuel
(Joosten, 2012). Restoration of peatlands through rewetting is an important and urgent
measure of climate change mitigation (Günther et al., 2020).

Since restoration of peatlands is a lengthy process (Nick, 2001, as reported by Raabe et
al., 2018), it is imperative to monitor the state of the peatlands during this time. Detection
and classification of microforms, such as hummocks and hollows, with UAV imagery has
been investigated in several studies (Lehmann et al., 2016; Lovitt et al., 2017). Character-
ization of wide-scale bog surface has been carried out with high-altitude, low point density
(10−1–101 points/m2) discrete lidar data (Töyrä & Pietroniro, 2005; Korpela et al., 2009;
Rapinel et al., 2011; Luscombe et al., 2015; Carless et al., 2019; LaRocque et al., 2020;
Räsänen et al., 2020). By design, these approaches could not effectively describe sub-
meter microforms. On the other hand, Korpela et al. (2020) used a waveform-recording
lidar mounted on a low-flying helicopter (≈ 250 m above ground level) to acquire data with
higher point density (≈ 50 points/m2), which they used to successfully map microforms in
a boreal bog.

No study using discrete-point lidar data acquired from a lower altitude and attempting to
identify microforms could be found. This was confirmed by a recent review of UAV ap-
plications in wetlands, which concluded that no research using UAV-borne lidar sensors
to study microforms in bogs has been conducted to date (Dronova et al., 2021). How-
ever the need for high-resolution UAV-borne lidar surveys has already been established
(Lehmann et al., 2016). The end goal would be to combine geometrically-accurate lidar
data with spectrally-rich RGB/multispectral data in order to e.g. improve the classification
accuracy of approaches based only on imagery. This direct application was not possible
in the current work, because of the persisting issues with the boresight calibration of the
system. However, a method for aligning data from flight lines a small ROI47 has been de-
veloped. Moreover, the high- and low-frequency components of a high-resolution model
of the bog’s surface are generated along the way.

This Chapter presents the above algorithm and its application over a small 20× 20 m ROI
within the Vechtaer Moor (the Bog Vechta), where ongoing restoration efforts are made

47region of interest
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in a joint project of several parties (Raabe et al., 2018). Section 5.1 describes the data
acquisition campaign and the developed method in detail. Next, Section 5.2 showcases
the algorithms application to the given ROI. Finally, Section 5.3 summarizes the current
results and offers pointers towards future research.

5.1. METHODS AND MATERIALS

5.1.1. STUDY AREA AND DATA COLLECTION

The general location of the ≈ 10 ha area of interest (AOI) in the Vechtaer Moor was shown
in Figure 2.1 in Chapter 1. Figure 5.1 presents the position of the ROI within the AOI.

ROI

Legend

Figure 5.1: Orthomosaic of AOI and location of the 20 × 20 m ROI.

The data collection had been performed on 19.08.2020. Three flights with the lidar system
covering the entire AOI have been carried out between 12:00 and 13:15. The flying height
was 20 m above ground and the UAV flew at 5 m/s. The flight lines were spaced at
≈ 14.5 m and the RGB camera was triggered at ≈ 1.3 Hz so that 85% front and 60%

side overlap were achieved for the RGB imagery. The images were in turn processed in
Agisoft Metashape (Agisoft, 2021) to derive an orthomosaic (Figure 5.1) and a DSM48

of the area of interest. No further analysis of the RGB data has been conducted so far.

The puck’s rotating frequency was set to 11 Hz and the acquisition mode to “dual”, mean-
ing a maximum of two returns would be recorded for each lidar outgoing pulse. Lidar
returns from the entire 360°FOV of the puck were saved.

48digital surface model
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On the same day, multispectral and RGB imagery had been collected by J. Lehmann and
H. Schneidereit from the University of Münster. Data from the entire AOI was collected
with a vertical take-off and landing UAV flying at 100 m above ground level. The data of
the two systems had not been fused together yet, but it is planned to combine the spatial
accuracy of the lidar with the spectral information of the latter system to support ongoing
vegetation mapping efforts at the Bog Vechta.

5.1.2. PROCESSING ALGORITHM

A procedure for merging misaligned point clouds and separating the surface of the re-
sulting point cloud into its low- and high-frequency components was developed. In this
Section, the low-frequency component is loosely referred to as a DTM because it char-
acterizes slow changes in relief / terrain. The high-frequency component is loosely called
a DSM because it describes local variations of the terrain’s surface. This usage is not in
accordance with the normal definitions of the two terms, but was employed to aid differ-
entiating between the two output models.

Here is an overview of the method: In the first step, the points belonging to the ROI were
extracted from all the flight lines. An initial classification of ground points was performed in
each of the clouds. The resulting ground points were resampled on a coarse 20 × 20 cm
grid, keeping only the lowest point per cell. From each of the subsampled files, a 1 ×
1 cm DTM was generated. These DTMs with artificially high resolution (simply called
artificial DTMs from now on) served as the basis for aligning the original point clouds.
Furthermore they were used to generate a low-frequency “background” DTM, relative to
which the aligned point clouds were normalized. The results were merged into a single
point cloud. This final normalized cloud had sufficient point density for the generation of a
high-resolution DSM, which showed the high-frequency variation from the low-frequency
background DTM.

Up to the generation of the artificial DTMs, standard point cloud processing techniques
were applied using LAStools (Isenburg, 2021). However some details are offered for the
subsequent steps. The artificial DTMs were smoothed with Gaussian blurring using large
kernels (σ = 200) to obtain their low frequency versions. These are referred to as smooth
DTMs. By subtracting the smooth artificial DTMs from the original ones, rough versions
of the artificial DTMs were obtained.

The rough DTMs were used to detect the horizontal misalignment between the original
point clouds: One of the input layers were designated as “true” and was successively
convolved with each of the remaining layers. The locations of the maxima in the result
were interpreted as the translation necessary for bringing the other layers into alignment
with the “true” one.

A simpler approach was used to detect the vertical misalignment: The “true” terrain el-
evation was declared to be the mean of the median elevations of the input rasters. A
correction was calculated for each of the inputs simply as the difference between its me-
dian height and the “true” terrain elevation. After applying these corrections to the artificial
DTMs, they were translated such that they almost matched. But some rotation because
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of boresight misalignment remained and the ICP49 (Besl & McKay, 1992) implementation
in CloudCompare (CloudCompare, 2020) was used to refine the alignment.

The previously calculated transformations (from median, convolution and ICP approaches)
were applied to the initial point clouds. They were also applied to the smooth DTMs. Next
the mean smooth DTM was used for normalizing all the original point clouds, i.e. the
height of each point was recalculated as the height above or below the surface of the
smooth DTM. The final low-frequency DTM was obtained by averaging the now-aligned
smooth DTMs. The high-frequency DSM was generated from a Delaunay triangulation of
the surface of the ground points in the aligned normalized clouds.

5.2. RESULTS AND DISCUSSION

The proposed workflow was implemented for a 20×20 m ROI in the north-west part of the
AOI. The location of the ROI is shown in Figure 5.1.

The ROI had been observed from seven different flight lines. The individual point clouds
had a mean density of 206 points/m2 (min = 37, max = 432 points/m2). The distribution
of the point heights in the initial clouds is shown in Figure 5.2. The misalignment of the
point clouds becomes evident in this Figure: In each flight line the bulk of the returns lies
at a slightly different height.
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Figure 5.2: Point heights in input files.

The effects of the misalignment of the flight lines are presented in Figure 5.3: a DSM
that was produced directly from the initial point clouds. Some effects of using misaligned
clouds are evident: The DSM appears noisy, with numerous points higher and others
lower than the general surface. This can be explained by the height mismatch of the

49iterative closest point
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individual lines (see Figure 5.2): The interpolated surface contains points from all layers
and not just from the e.g. the highest. This problem was surely facilitated by the relatively
low point density of the individual clouds. If the highest layer had a high point density, the
layers underneath would not have contributed to the DSM. It would still be an erroneous
elevation map of the ROI, just not so obvious.

m AMSL

Figure 5.3: DSM produced from the original, misaligned, point clouds. Left: orthomosaic of the
ROI. Right: DSM of the ROI. Produced by merging the seven original point clouds. Colour-bar:
height above mean sea level.

The height distributions of all the original clouds were similar in shape, only shifted up
or down. Therefore the height mismatch between the flight lines was easily solved using
the median approach. The vertical corrections necessary for bringing median heights
of the smooth DTMs to the same value ranged from −13 cm for line seven to +28 cm
for line eight. For calculating the horizontal translation between the rough DTMs, it was
necessary to choose a pivot DTM. Line eleven was chosen as the pivot because its
vertical correction was the median among the other vertical corrections. The convolution
of the other rough DTMs with that of line eleven yielded the shifts needed in easting and
northing. These ranged from −28 to +41 cm in easting and −18 to +13 cm in northing.

Figure 5.4 shows the seven smooth DTMs, as well as mean smooth DTM, after translating
them with the above corrections. While the rasters’ mean values do agree with each other,
it can be seen that they are clearly rotated about a east-west line. This rotation can be
attributed to a roll error, since the flight of the UAV were roughly east-west oriented.

Figure 5.5 further shows the rotation of the smooth DTMs about the flight lines’ axis.

The rotation problem seen in Figures 5.4 and 5.5 was solved with the ICP algorithm.
Figure 5.6 shows the points clouds after rotating and translating them towards the mean
smooth DTM.

An important observation is that while some point clouds in Figure 5.5 only remotely
resembled the mean DTM, all the clouds in Figure 5.6 look similar to each other and the
mean DTM. This can be further seen in Figure 5.7.

The fact that all transformed DTMs agree on the low-frequency structure of the terrain is
reassuring. By applying the transformations that were calculated for the smooth DTMs to
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m AMSL

Figure 5.4: Smooth DTMs before ICP: top-view. Top row from left to right: lines 7–10. Bottom row
from left to right: lines 11, 12, 14 and the mean smooth DTM.
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  i) Mean DTM 

  
Figure 5.5: Smooth DTMs before ICP: side-view of point clouds from the east. The z-axis (el-
evation) is magnified ×64 to make the differences noticeable. Point clouds in panels (a)–(h) are
coloured by flight line; in panel (i)—by elevation.

the original point clouds, the heights of the point in these clouds are also made to follow
very similar distributions. These can be seen in Figure 5.8.
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 f) Line 12 

 
 g) Line 14 

 
h)  Lines 7–12 & 14 

 
i) Mean DTM 

 
  Figure 5.6: Smooth DTMs after ICP: side view of point clouds from the east. The z-axis (eleva-
tion) is magnified ×64. Point clouds in panels (a)–(h) are coloured by flight line; in panel (i)—by
elevation.

m AMSL

Figure 5.7: Smooth DTMs after ICP: top-view. Top row from left to right: lines 7–10. Bottom row
from left to right: lines 11, 12, 14 and the mean smooth DTM.
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Figure 5.8: Point heights after translation and rotation of input files.

Figure 5.9 shows the low- and high-frequency components side by side. The low-frequency
DTM on the left has been obtained by averaging the translated smooth DTMs. The high-
frequency DSM on the right is the result of triangulating the surface of pint clouds that
were transformed and normalized about the low-frequency surface.

low f

high f

m AMSL

Figure 5.9: Low-frequency DTM (left) and high-frequency DSM (right). Both models have bound-
ing boxes denoting the original 20 × 20 m ROI.

Finally, adding the two models together, a DSM containing both low- and high-frequency
components of the scanned terrain. This is of course analogous to deriving a DSM di-
rectly from the now aligned point clouds. Compared to the initial attempt that used the
misaligned point clouds and can be seen in Figure 5.3, this model represents the actual
bog surface more faithfully. Figure 5.10 presents this final DSM.
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m AMSL

Figure 5.10: DSM produced from the final, aligned, point clouds. Left: orthomosaic of the ROI.
Right: DSM of the ROI.

5.3. CONCLUSION AND OUTLOOK

This Chapter presented an algorithm for combining lidar scans from misaligned flight lines
to produce high-resolution DSMs of a bog. The herein proposed method used the cross-
correlation of the high-frequency structures from each of the scans to derive the initial
xy translations needed to align the clouds. Furthermore the low-frequency components
were used to calculate the rough height misalignments between the clouds. Finally, the
ICP algorithm provided a fine co-registration of the flight lines. It operated on smooth
surfaces and its solutions were successfully applied to align the clouds corresponding to
each of the considered surfaces.

The viability of the method has been demonstrated for a small 20× 20 m ROI. Next a tiled
approach could be applied to process the entire scanned surface. Edge artefacts might
be unavoidable in this case, but buffering the tiles and making the further processing
use the same grid could be a simple yet effective strategy to minimize potential negative
consequences.

The derived outputs and the aligned clouds can serve as inputs to further processing
techniques. The low-frequency model can be used to detect slow changes in topography,
which could help inform hydrological modelling of the area. The high-frequency compo-
nents can be used to extract topographic and vegetation features on a fine, local scale.
Future work should focus on combining the present results with ground truth data and
assessing how well they could assist e.g. vegetation mapping tasks.
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6. USE CASE 2. Naturwaldzelle Niederkamp: SEGMENTATION OF

TREES IN A NEAR-NATURAL BEECH FOREST

6.1. INTRODUCTION

6.1.1. NATURAL FOREST CELLS IN NRW
Wald und Holz NRW – the forestry agency in the German state of North Rhine-Westphalia
(NRW) – designated various areas throughout the state as representative of the local for-
est communities. These areas are called “Naturwaldzelle(n) / NWZ” (natural forest cell(s))
and in total, there are 75 of them, covering a total area of 1680 ha. Thus all major forest
communities in NRW are represented. While their areas range from 1.4 to 110 hectares,
almost half of the cells are between 11 and 20 hectares large. The natural forest cells
are not used commercially: As of 2021, over half of them have not been harvested for
40–50 years. Any further interference is reduced as much as possible, to allow the areas
to develop in a near-natural fashion. Each cell normally features two equal-sized core
areas, each being one hectare large. Also generally one of the areas is fenced and the
other is open. Here the trees and shrubs with a stem diameter of at least four centimetres
(measured at 1.3 metres above ground) have a unique ID and every ten years, abundant
data is collected manually for each such tree and shrub (Wald und Holz NRW , n.d.-a).
Among these data are:

• For living trees:
– Tree species,
– Stem diameter at 1.30 m above ground (aka diameter at breast height / DBH),
– Tree height (sampled for some trees, then calculated with allometric curves),
– Layer classification (from over- to under-story), etc.

• For dead trees:
– Classification (lying and standing deadwood, with or without crown),
– Decomposition degree (from freshly dead to strongly decayed),
– Diameter and height if standing, etc.

The data collection is labour- and time-intensive, so Wald und Holz NRW sought the
assistance of the Rhine-Waal University of Applied Sciences to jointly investigate the po-
tential to use UAVs for supporting the data collection efforts. This chapter documents the
joint lidar campaigns conducted in one of the natural forest cells and a tree segmentation
approach that was developed to aid future data collection campaigns.

The currently fully-manual data collection in the natural forest cells in NRW focuses on
individual trees. In order to speed-up integration of UAVs for future monitoring activities, it
was decided to also work on the level of individual trees in the context of this thesis. This
was evidently facilitated by the possession of the present UAV-borne lidar system, whose
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low flying altitude and high pulse repetition rate enables the acquisition of high-density
data required for differentiating individual trees.

A crucial step in data preparation for extraction of tree-based metrics is the segmentation
of trees from the point cloud data. This chapter documents the acquisition of lidar data
in one of the natural forest cells and the attempts made so far at segmenting above-
ground points into individual trees. It is structured as follows: First, Section 6.2 presents
findings from literature regarding lidar use in forestry and segmentation of trees from
lidar data. Next, Section 6.3 describes the data acquisition campaign and an algorithm I
developed for delineating individual trees. Current results are presented and discussed in
Section 6.4. Finally, Section 6.5 summarizes the current chapter and provides an outlook
at potential future developments.

6.2. LITERATURE REVIEW

6.2.1. LIDAR USE IN FORESTRY

Area-based vs. tree-based studies Airborne lidar has found extensive applications
in forests over the past decades. A summary detailing the recognition of lidar’s canopy-
penetration properties in the eighties and its subsequent adoption to forestry was given
by Nelson, Krabill, and Tonelli (1988). Næsset et al. (2004) outlined a range of studies
from Nordic countries that derived tree height, stem volume and other forest metrics at
the plot- and stand-levels.

Initial studies were restricted by the low point density of the available instruments. Still,
due to the usefulness of area-wide metrics, further research on plot-, stand- and pixel-
levels continued. Some examples include: Classification of tree species by combining
lidar and hyperspectral data (Dalponte, Bruzzone, & Gianelle, 2012); Monitoring of log-
ging in Amazonia with bi-temporal lidar datasets (H.-E. Andersen et al., 2014); Estimation
of fire severity with pre- and post-event lidar and RGB data (Hillman et al., 2021).

Meanwhile, numerous studies have leveraged the evolution of the lidar sensors and the
ever-higher available point density to extract information about individual trees. Among
the variables estimated were: tree height (Popescu & Wynne, 2004), crown radius (Heurich,
2008) and diameter at breast height (Yao, Krzystek, & Heurich, 2012). Further examples
of studies working on a tree level as well as details regarding the algorithms used to
segment the trees are given in Section 6.2.

UAVs as a platform for lidar Airborne lidar was traditionally mounted on airplanes
or helicopters flying at hundreds of meters above ground. With the miniaturization of
the lidar sensors and the widespread use of UAVs, multiple systems and applications
have been developed to enable collection of frequent datasets with high point densities.
Sensors designed for the automotive industry found their way in pioneering UAV-borne
forest inventory systems (Jaakkola et al., 2010; Wallace et al., 2012). Guo et al. (2017)
developed an integrated solution consisting of hardware and software for generation of a
myriad of tree- and canopy-level metrics. Survey-grade lidar units with dedicated UAVs
also gained popularity in forest applications (Brede et al., 2017).
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6.2.2. TREE SEGMENTATION ALGORITHMS

There are numerous algorithms for extraction of trees from lidar data. An overview of
current and established methods is given by Camarretta et al. (2020). The present section
outlines some of the main categories and developments from the last 20 years.

The earlier tree segmentation algorithms usually operated on lidar-derived CHMs50. Hyyppä
et al. (2001) developed a fixed window-size local maxima extraction technique to find
treetop candidates in smoothed CHMs. Combined with a decision tree to identify the
neighbouring pixels belonging to each candidate, this technique successfully delineated
tree crowns and extracted individual-tree measurements that were then extrapolated to
stand-wise statistics for a forest consisting mainly of Norway spruce (Picea abies) and
Scots pine (Pinus sylvestris). Dalponte and Coomes (2016) applied this method to suc-
cessfully delineate individual crowns. By identifying the tree species with hyperspectral
data, they used allometric relationships to estimate carbon stocks in a managed forest
situated in the Italian Alps and dominated by P. abies, also containing further coniferous
and deciduous tree species.

Chen et al. (2006) implemented a seeded watershed segmentation algorithm to delineate
crowns of individual trees in cannopy height models which were subjected to maximum
filtering,51 followed by Gaussian blurring and inversion.52 Among this study’s innovations
was using a variable-size window to search for local maxima in the modified CHM. These
maxima were identified as treetops and further used to seed the above algorithm. The
authors applied the method to segment tree crowns in a savanna woodland consisting
mainly of blue oaks (Quercus douglasii H.&A.).

Silva et al. (2016) segmented crowns of individual longleaf pines (Pinus palustris Mill.) in
a managed forest. They first detected treetops as local maxima in both raw and smoothed
cannopy height models, then combined centroidal Voronoi tessellation with thresholding
as well as heuristics relating crown width and tree height to isolate the pines from the
CHMs. Overall, trees were detected with high accuracy in plots with < 70% canopy cover.

Advances have also been made in segmentation of trees directly from the point clouds.
Reitberger et al. (2009) presented a novel algorithm that used a CHM-based watershed
segmentation as an initial rough step, but refined its results by automatically finding tree
stems and then crowns in the point clouds. By considering one candidate cluster at a
time, the authors used the vertical point distribution to differentiate between stems and
crowns. Then a RANSAC53 approach was applied to the potential stem points to detect
one or multiple stems. Finally, a normalized cut was used to assign the crown points to
the corresponding stems. The algorithm excelled at identifying smaller trees that were
shadowed by larger ones and therefore challenging for raster-based methods.

50cannopy height models
51Maximum filtering is achieved by replacing pixel values with the maximum value in a small specified

neighbourhood.
52After inverting a raster, the tree crowns would resemble valleys. It can be achieved by multiplying the

input with a negative scalar.
53random sample consensus
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The normalized cut algorithm can combine multiple features to find an optimal partition
in a dataset. It was first proposed for 2D image segmentation by Shi and Malik (2000).
Then, Reitberger et al. (2009) adopted the algorithm for finding individual trees in point
clouds. This in turn led to further studies that successfully applied the method to segment
trees from full-waveform-lidar point clouds (Yao et al., 2013; Amiri et al., 2016, 2019).

Li et al. (2012) developed an algorithm that started by assuming the single highest point
in a normalized point cloud was a treetop. It then progressively grew the tree by adding
points which lay lower than the current solution, but within a certain distance to the points
already in the tree. Next, it removed the points belonging to this tree from the point cloud
and the whole procedure was repeated with the next highest point. This simple approach
segmented trees with 86% recall and 94% precision in a mixed conifer forest.

Vaughn, Moskal, and Turnblom (2012) demonstrated an algorithm that operated on voxels
instead of raw point clouds. By transforming the data into a voxel space, the authors could
significantly reduce the amount of computation required. The developed algorithm pro-
cessed entire voxel slices at once, also going from top to bottom. New voxels were added
to existing clusters based on a number of conditions, some of which dictated what hap-
pened to the voxel under consideration when multiple suitable candidate clusters were
detected. While satisfactory results were obtained for coniferous species, some hard-
wood trees required manual editing of the identified clusters. Nonetheless, after applying
the Fourier transform to the original waveforms associated with each detected crown,
the authors used a support vector machine to correctly classify 111 out of the 130 trees
belonging to five different species.

Similarly to Reitberger et al. (2009), Amiri et al. (2016) also relied on an initial watershed
segmentation of the CHM. However, their method differed in that mean shift clustering
was used to detect “super voxels” in the point cloud – meaning closely situated points
which were likely to belong to the same tree. This way, significant savings in the compu-
tation cost of the following steps could be made. Next, a normalized cut algorithm was
applied to the detected clusters, using lidar pulse width and previously detected maxima
in the canopy to merge the “super voxels” into complete trees.

Wallace, Lucieer, and Watson (2014) conducted a comparative study and assessed five
different tree segmentation algorithms, considering CHM-based approaches, as well as
voxel and point-cloud based ones. Among the candidates, they found a hybrid approach
to work best. Local maxima from a blurred CHM were used to seed a k-means clustering
algorithm, which successfully identified 98% of the trees in a four-year-old Eucalyptus
globulus plantation.

A more recent development was the use of deep-learning approaches. Windrim and
Bryson (2020) extracted features from voxelized point clouds, such as vertical point den-
sity, maximum height and average return on an xy-grid and mapped them to a three-band
raster. Then they could apply a classical deep learning approach wherein a Faster-RCNN
classifier was trained to produce 2D bounding boxes around trees in this three-band rep-
resentation of point clouds. Furthermore, a 3D fully convolutional neural network was
used to segment individual trees into crowns and stems.
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6.3. METHODS AND MATERIALS

6.3.1. STUDY AREA AND DATA COLLECTION

An 8.2-ha natural forest cell (NWZ 43 Niederkamp, Wald und Holz NRW , n.d.-b) situated
in Kamp-Lintfort was selected as the pilot location for collecting data with the university’s
UAV-borne sensors. The forest cell is dominated by common beech (Fagus sylvatica),
with a few sessile and common oaks (Quercus petraea and Q. robur ). Small areas in
the understory are covered by common holly (Ilex aquifolium). In NWZ Niederkamp,
the general rule of having two core areas has been somewhat bent. Instead of one
continuous non-fenced area, two 0.5-ha core areas had been established: one and three.
They are bordering with the fenced core area two, which is as usual, one hectare large.
The location of the three core areas within the NWZ is shown in Figure 6.1.

NWZ
Open CA
Fenced CA

Legend

NWZ 43 Niederkamp: Location of core areas

© OpenStreetMap contributors

Figure 6.1: Location of the three core areas within the natural forest cell (NWZ ) Niederkamp.

The cell is surrounded by similar forest from all sides, except the north-east side, where it
borders with an agricultural field. With the farmer’s permission, two lidar flight campaigns
were conducted from the field. Thus take-off and landing were facilitated and good visual
contact was maintained with the UAV. The flight campaigns took place in late 2020.

Using the observations from the first campaign on 30.11.2020 (Niederkamp 1), which
was aborted due to weather conditions, the flight parameters for the next campaign on
18.12.2020 (Niederkamp 2) were optimized. For instance, because laser returns were ob-
tained from distances longer than initially anticipated (Velodyne LiDAR, Inc., 2018a), the
flying height was increased from 80 m above ground 54 in the first campaign to 90 m in the
second one. Moreover, data from the Niederkamp 1 campaign was used to perform the
system’s boresight calibration. The campaign Niederkamp 2 was successfully completed
and lidar as well as RGB data were collected for the entire cell. The flight paths of the two
campaigns and the general location of the natural forest cell were shown in Figure 2.2.

54Without ground-following mechanisms, the flying height is always stated above the take-off point.
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6.3.2. SEGMENTATION ALGORITHM

An initial attempt to segment the acquired point clouds with the lidR package (Ver-
sion 3.1.1; Roussel et al., 2020) for R (Version 4.0.5; R Core Team, 2021) was made.
Among the available algorithms, those developed by Li et al. (2012), Dalponte and Coomes
(2016) and Silva et al. (2016) were used. Unfortunately, no combination of parameters
that would yield satisfactory results with any of the methods was found. Instead, an alter-
native algorithm was developed.

In contrast to the more widespread paradigm where trees are found based on identifying
the high points, the possibility to detect tree stems instead and let them grow upwards
was investigated. After all, every tree needs to start growing from the ground, but not
every one necessarily produces a prominent treetop. This was especially facilitated by
the data collection in the leaf-off condition, so that a considerable number of returns was
obtained from under the canopy.

Description of the segmentation algorithm The developed algorithm operates di-
rectly on a normalized point cloud. For each point the algorithm creates and keeps track
of an attribute called cluster-ID. Initially, all points above ground have the ID 0 and the
ground points: ID −1. The aim is to assign the same ID > 0 to all points that make a tree
together, so that at the end every tree has a unique ID. In order to speed-up the numerous
spatial queries, the points were organized in a k-dimensional tree, with k = 3. The tree
was implemented with the spatial.cKDTree function from the SciPy package for Python
(Virtanen et al., 2020).

The procedure starts at a certain height above ground (hmin) and for every point in a
slice of height ∆h, finds neighbours that are located in an ovoid, such that the current
point is slightly above the ovoid’s base and the ovoid’s long axis looks upwards. This
shape was chosen to stimulate the growth of clusters mainly upwards, but also include
the canopy. The shape and dimensions of the ovoid are controlled by two parameters:
height and pointedness. The algorithm decides the label of both the current point and
the unlabelled neighbours based on the membership of the found neighbours and of the
point under consideration. For instance, if the current point already belongs to a cluster,
the unassigned neighbours get the same cluster ID. Otherwise, the label of the most
prevalent cluster among the considered neighbours wins.

When no adequate cluster is identified among neighbours, the points are assigned a new
cluster-ID. Once all the points from the current slice have been exhausted, the points in
the next slice are processed. This continues until all points above hmin are looked at.

The above procedure is repeated twice: the first pass is called initial clustering. The
second – refined clustering. Only in the first pass can new clusters be created and only
as long as the point being considered is lower than a maximum height hmax. The second
pass does not create new clusters but only tries to expand those found in the first pass.

Because the first pass is usually more conservative and does not grow the clusters ex-
cessively, the second pass uses a wider ovoid usually identifies edges of canopies or
long branches not detected initially.
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Evaluation of the segmentation algorithm The algorithm has been tested on data
from the core area one (See Figure 6.1). A point cloud containing the 50 × 100 m area
surrounded by a 10 m buffer has been extracted from a single flight line. This cloud cov-
ered an area of 0.88 ha and had an average point density of 78 pulses/m2. The cloud was
then normalized by classifying the ground points and setting each point’s height relative
to the ground surface. These steps were accomplished with the lasclip, lasground and
lasheight utilities from LAStools (Isenburg, 2021).

The initial clustering was performed with the following parameters: hmin = 2.0 m, hmax = 15.0 m
and ∆h = 0.1 m. The ovoid had a height of 3.0 m and a diameter of 1.9 m at its widest.
The refined clustering used an ovoid with a height of 3.0 m and a diameter of 2.8 m at its
widest. These values were chosen in order to balance a few different requirements:

• Enable the algorithm to correctly “jump” from a stem to its crown where gaps were
encountered in a tree’s height profile;

• Avoid “jumping” onto the crowns of other trees;
• Grow mostly upwards in the first pass;
• Complete the crown in the second pass, with more lateral growth.

The values were fixed after running the algorithm on data from another flight line and a
different part of the natural forest cell. No attempt to optimize any of the parameters were
made when working with data from core area one.

After running the algorithm, the resulting point cloud was inspected visually. First, the
entire point cloud was scrutinized. Then different sections were cut and looked at and
finally, individual clusters were extracted and visualized with lasview from LAStools
and CloudCompare (CloudCompare, 2020). This visual examination attempted to assess
whether the results were plausible.

Next, the distribution of tree heights as obtained by segmenting the point cloud was com-
pared with ground truth data. Wald und Holz NRW (WuH) provided a dataset collected
manually in 2019 and containing, among other variables, the height of the trees in core ar-
eas one and two. Included were both the live trees and the standing dead trees (snags).
The height of some trees was indeed measured,55 but that of the others was calculated
using allometric relationships. Both the complete dataset (“Reference” ) and the subset
containing only measured trees (“Measured” ) were considered in the following.

In the WuH dataset, the trees were numbered, so that the parameters were assigned to
individual trees, which can then be found again after 10 years. However, the position of
the trees was not specified. Therefore, only the distribution of heights was compared.

Out of all the clusters identified by the segmentation algorithm, those that had at least
50% of their 2D convex hull within the core area were selected, eliminating those situated
mostly or completely in the buffer zone. A further condition was that the clusters either
had at least 100 points, or had at least ten points but also a ratio of height to “mean width”
of at least five. To find the “mean width” of a cluster, its projection onto the xy plane was
found. Then the area of the projection’s 2D convex hull was calculated. The “mean width”

55The measurement method was not specified.
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was the square root of this area. This metric was used because numerous snags could
be seen in the point cloud. They had few laser returns but a very prominent tall shape. To
estimate the heights of the identified clusters, the elevations above ground of their highest
points were considered. This dataset is referred to as “Segmented”. The histograms and
the summaries of the considered datasets are presented in Section 6.4.

6.4. RESULTS AND DISCUSSION

Visual assessment Out of 473817 points situated at least 2 metres above ground, 97%
were assigned to one of 846 clusters. However, 98% of the assigned points were con-
tained in just 108 clusters containing at least 100 points each. Also, 92% of all the assigned
points were contained in just 74 clusters which had a size of at least 2000 points.

Figure 6.2 presents the results viewed from above. In the first two panels, it shows the
processed point cloud cropped to the core area (without the 10m–buffer). In the last panel,
the trees whose height was compared to the ground–truth are shown. It is noteworthy
that some of their crowns are not contained entirely within the core area.

Figure 6.2: Segmentation results for core area 1 (50× 100 m). Top–view. (a) Point cloud coloured
by height above ground. All points below two metres are grey. (b) The same point cloud coloured
by cluster–ID. IDs −1 (ground) and 0 (unclassified) are greyed out. (cont.)
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Figure 6.2: Segmentation results for core area 1 (50 × 100 m). Top–view. (c) A point cloud
containing only clusters with at least 2000 points.

Figure 6.3 shows the same data viewed roughly from south-west.

Figure 6.3: Segmentation results for core area 1 (50× 100 m). Side–view. Same point clouds and
colouring schemes as in Figure 6.2. (cont.)
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Figure 6.3: Segmentation results for core area 1 (50 × 100 m). Side–view.

It can be seen from the Figures 6.2 and 6.3 that most large trees are delineated correctly.
However, the algorithm still suffers from over-segmentation, i.e. more clusters than trees
are produced. While it would be best to avoid over-segmenting the point cloud in the first
place, filtering out the particularly small clusters can be a quick and effective fix. This
becomes obvious when the distribution of cluster sizes is considered.

Figures 6.4 and 6.5 show two clusters that have been extracted from the segmented
point cloud. First, an example of a well–segmented tree can be seen in Figure 6.4: The
structure of a tree can be traced and it seems complete. This cluster plausibly represents
one single tree.

Figure 6.4: Example of a well–segmented tree. Colour encodes depth in the first two panels
(dark = far) and height – in the last two (dark = low). a) View from south-east. b) View from
south–west. c) View from above. d) View from below.
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In contrast, Figure 6.5 shows an example of grave under-segmentation. While a rough
tree structure can be inferred from the image, it is also clear that multiple stems were
included in this cluster. In addition to two complete trees, the crown of a third tree was
also incorporated into the result.

Figure 6.5: Example of grave under-segmentation. Colour and perspective are to be interpreted
like in Figure 6.4. Note the problems with this segmentation: two stems (panels (a) and (b), lower
half); extra crown (panel (b), right–upper corner). In panel (d) it can further be seen that there are
multiple origins for branches (two stems at (10,9), (12,6) and third crown at (16,7)).

In the example from the Figure 6.5, where the two trees were quite close to one another,
the algorithm was too eager to grow, especially sideways. I suppose this tendency could
have been curbed by adjusting the shape of the ovoid, but the present analysis is rather
a proof of concept, so no further optimizations have been done yet.

Comparison of height distribution with ground truth In the reference dataset, there
were 127 trees that were supposed to be located within the core area 1. However, only
88 of them (“Reference” dataset) could be located during the data collection campaign
from 2019. The explanation provided for the missing trees was that either they fell, or
could not be reached because of holly. If the latter were the case – a segmentation of
remotely–acquired lidar data could indeed support the field work.

Out of the identified trees, 49 had their height measured (“Measured” dataset), while the
height of the other 39 units was calculated using allometric relationships.

Based on the conditions outlined in Section 6.3, i.e. cluster size and height–to–“mean
width” ratio, 81 clusters had been identified in the Segmented dataset.

Table 6.1 gives a summary of the three datasets. The distribution of these heights is also
shown in Figure 6.6.
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Table 6.1: Summary of tree heights in Core Area 1: field–data vs. segmentation results.

Reference Measured Segmented

count 88 49 81
mean 31.8 33.2 31.2
std 11.9 10.2 10.7
min 1.6 6.2 4.4
25% 28.8 30.8 32.5
50% 37.9 38.2 36.4
75% 39.6 39.4 37.4
max 44.5 43.6 40.3
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Distribution of tree heights in ground truth data (a & b) vs. segmented (c)

Figure 6.6: Distribution of tree heights in Core Area 1: field–data vs. segmentation.

Based on Table 6.1 and Figure 6.6, the distributions of the three datasets seem to match
rather well. However a number of differences can be observed: The mean, median and
maximum height estimates are lower for the segmented trees. But these discrepancies
are not caused by the algorithm itself. The highest point in the analysed point cloud was
situated at 40.6 m above ground, so the algorithm underestimated the result by only 0.3 m.
There is a further four–meter difference between my results and the reference data. An
investigation into the cause of this error is still pending.

A positive result is that the number of detected trees comes close to the manual count.
Assuming that after filtering out the clusters, trees were rather missed instead of counting
too many, the number of false negatives would be seven and that of false positives – zero.
This would translate into 1.00 precision and 0.92 recall which would correspond to an F1

metric of 0.96. These of course are the most optimistic estimate. But, considering that the
example from Figure 6.5 consists of ≈ 2.5 trees and was included in the dataset as one
tree, the actual metrics are definitely worse. I did not attempt to find out how much worse,
because this would have required validating the results with a certain confidence. As
stated before, providing a proof of concept was sufficient at the present stage. Section 6.5
reflects upon the merits and drawbacks of the current approach and explores possibilities
to improve the results.
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6.5. CONCLUSION AND OUTLOOK

The point-cloud-based tree segmentation algorithm presented in this Chapter demon-
strated plausible results in a near-natural beech forest. Up to now, the assessment was
qualitative, rather than quantitative. Future work should involve post-segmentation pro-
cessing, such as extraction of tree metrics other than height. Also, for meaningful quanti-
tative analysis of the results, these should be carefully checked against field data.

Once the accuracy of segmentation can be reliably quantified and tree metrics can be ex-
tracted and verified with ground-truth, a comparison of performance with other algorithms
would be appropriate. I suppose that, by developing this algorithm, a better understand-
ing of the motivation behind the methods employed in the papers mention in Section 6.2
was gained. Therefore, selecting suitable parameters in e.g. lidR (Roussel et al., 2020)
should be a more doable task than it was before working on tree segmentation.

The idea to segment trees from the base instead of the top has some merit and is worth
pursuing further. A weakness of the employed dataset was that many tree trunks had ver-
tical gaps of a few meters. One consequence was that some crowns were not assigned
to their correct stems and were instead incorporated into neighbouring clusters.

A possible solution could be using data from multiple flight lines. In fact, 17 flight lines
generated returns from the core area and its buffer, leading to a total point density of 478
pulses/m2. But data from overlapping flight lines was not combined because the boresight
calibration had not been adequately solved yet. It can be seen in Figure 6.7 that data
from multiple flight lines produced more complete but also blurrier trees, overestimating
the stem diameters and letting the crowns grow more into each other.

Because the boresight parameters had not been estimated well enough yet, it was de-
cided to only work with one flight line for now. This way, no additional difficulty had been
presented to the algorithm. But I am optimistic about decreasing the boresight errors con-
siderably, which will in turn allow obtaining coherent high-point-density scans. Figure 6.7
demonstrates that the tree stems would in turn be way better represented in the data,
especially due to oblique scanning angles.

Figure 6.7: Core Area 1. Multiple flight lines combined. Top-view (Compare to Fig. 6.2.a). (cont.)
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Figure 6.7: Core Area 1. Multiple flight lines combined. Side-view (Compare to Figure 6.3.a).

The fact that the point density at the stem height is disproportionately increased by com-
bining data from multiple flight line is further confirmed by Figure 6.8. It shows the nor-
malized distribution of the points at all heights above two metres for a cloud obtained
from one line (“single” ) vs. another cloud combining data from 16 flight lines (“multiple” ).
The data below two metres was not included in the Figure, since the relatively minute
differences between the two density plots are harder to spot when the large number of
ground returns and low vegetation is included.
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Figure 6.8: Distribution heights in point cloud of Core Area 1.

The marked line in Figure 6.8 shows the ratio of the two normalized distributions. It is
larger than one where the fraction of returns in a given height bin is higher in the case
of multiple lines vs. a single line. When it is lower than one, the opposite is true. It
can thus be seen that combining data from multiple flight lines increases the proportion
of points lower than ≈ 27 metres (stem returns) or higher than ≈ 40 metres (treetops),
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but decreases the proportion of points constituting the bulk of the point cloud: between
≈ 27 − 36 metres (crown returns).

The better representation of stems in combined flight-lines data, as seen in Figures 6.7
and 6.8, is in part due to the oblique scanning angles. However the absence of leaves
might have contributed even more, by enabling penetration of laser pulses deeper than
just the crowns. The collection of another dataset in NWZ Niederkamp during the leaf-on
season is being planned for the end of this summer. When this data becomes available,
it would be interesting to assess how the height-distribution of points changes and how
the performance of the herein developed algorithm is affected by the presence of leaves.

Assuming the lidar penetration in the upcoming leaf-on dataset is good enough to allow
obtaining sufficient stem returns, then the algorithm would not be restricted to data ac-
quired in a specific season. Under these conditions, there are certain ideas that could be
incorporated to make it more robust.

For instance, stem detection using point height distribution (Figure 6.8) and a RANSAC-
based stem line reconstruction (Reitberger et al., 2009). This method of consistently
finding tree stems, combined with the high point density that the herein presented sys-
tem can generate when multiple flight lines are used, could greatly aid the first stage of
the algorithm. By restricting each cluster to exactly one such stem, a much more reli-
able segmentation than the current one could be achieved. Over-segmentation would be
curbed because no clusters could be formed besides the existing stems. So far under-
segmentation was only observed for the current algorithm when stems were not correctly
identified and their crowns could be taken over by other clusters (Figure 6.5). Therefore
if all stems were to be found, then under-segmentation would also be unlikely.

Multiple crowns were attributed to the same cluster in the example presented in Fig-
ure 6.5. This particular mis-segmentation could be identified in e.g. a CHM, so a subse-
quent normalized cut step could be added to the algorithm for solving these cases. To the
best of my knowledge the normalized cut has been applied to segment trees only from
full-waveform-lidar data so far (Reitberger et al., 2009; Yao et al., 2013; Amiri et al., 2016,
2019). These datasets were particularly suited for the algorithm due to their feature-
richness (multiple returns per pulse, as well as pulse width and height for each return).
Still, the applicability of the algorithm to discrete-return lidar and features stemming from
e.g. simultaneously-collected RGB-data or lidar return intensity could be investigated and
applied as a post-processing step for particularly difficult clusters.

Summarizing, this chapter presented a point-cloud-based tree segmentation approach.
Its performance has been loosely evaluated in a 0.5 ha forest dominated by beeches.
The algorithm’s primary contribution is the point clustering from the forest floor towards
the canopy top, which is different from currently established approaches. This method
might have an advantage in high-density datasets with numerous stem returns, since it
could effectively prevent both over- and under-segmentation. Also, a few strategies for in-
creasing the robustness of the algorithm have been presented and the need to rigorously
evaluate its performance and compare it to existing methods has been established.
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7. REFLECTION AND OUTLOOK

The present thesis documented the development of a UAV-borne lidar system. Off-the-
shelf components have been used when available. Both the hardware and software de-
veloped to tie the components into a functioning whole have been thoroughly explained
herein. Furthermore, the hardware schematics are distributed via the Appendix A of the
current thesis. Also the entire software suite, from data acquisition, to visualization and
processing into georeferenced point clouds had been made publicly available (Dogotari
& Rostalski, 2021).

On the hardware side, special attention had been given to designing the power electron-
ics. These combine efficient circuits on one hand with several layers of safety on the
other, such that both the sensors and power sources (e.g. the carrying UAV) are pro-
tected from several scenarios of user error. Moreover, the system operation has been
designed with user friendliness in mind: Cumbersome power-up or sequences for the
APX have been eliminated. Further considerations have been given to using standard
connectors and protocols, thus facilitating the swapping of individual components.

Regarding the software developed, the acquisition and processing of data have been sep-
arated completely. While the first uses time-tested techniques for ensuring reliable field
operation, the latter takes advantage of modern multi-core processors and in-memory
computing to speed up the results. Most of the programming had been done in Python
3, which is a modern and extremely maintainable language. Moreover, the much faster
computations in C, available via the NumPy library, were used to boost performance.

A procedure for boresight calibration using retro-reflectors has been developed. So far
only rough misalignments could be corrected, despite best ongoing efforts. However the
likeliest sources of error have been identified and solutions to both improve the current
approach and apply other boresight calibration methods were proposed.

The current paper synthesises approximately three years that were invested into devel-
oping, integrating and using the system. As such, given the open-source nature of the
deliverables, it serves to immensely boost further research groups that would integrate
their own lidar system. It can be used as is, or as a basis for further developments. With
trivial software changes, the developed workflows can be adapted to other sensor con-
figurations, so for instance Velodyne’s latest 128-channel lidar sensor with 300 m range
(Velodyne LiDAR, Inc., 2021) could easily be integrated into a similar system.

The applicability of the system to diverse environments has also been demonstrated in
the current thesis. An algorithm for segmenting trees in a bottom-up fashion has been
developed in this work. The proposed method has been applied to a 0.5-ha point cloud
acquired over a beech natural forest cell and trees up to 40 metres tall have been seg-
mented. Even though the algorithm in its current form is prone to over- and under-
segmentation errors, significant improvements are expected once the boresight issue
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is fixed and data from multiple flight lines can be combined for a better representation
of trees. Also some ideas from existing algorithms that mainly operate in a top-down
approach have been selected. Implementing these could significantly improve the algo-
rithm’s performance and versatility.

The system had also been applied in a completely different environment. Instead of 40 m
tall trees, the second use-case looked at finding microforms in a bog. The features of
interest were on a sub-meter spatial scale both horizontally and vertically. While the end-
goal of reliably identifying microforms has not been achieved, the present work was the
first one to use a UAV-mounted lidar to attempt this task. Moreover, the groundwork had
been laid for detecting microforms: For a small 20 × 20 m ROI, the boresight errors of the
system have been overcome to create a high-resolution DSM, which was further split into
its low- and high-frequency components. The current results are promising and should
be used to pursue the end-goal of identifying microforms.

Both use-cases presented in this thesis are of high relevance.

Segmentation of trees in natural forest cells and further measurements on the individual
segments would amplify the effectiveness of the as-of-yet time- and labour-intensive data
collection efforts of the state forestry agency. Such data would be directly responsible for
gaining a better understanding of climate change’s impact on regional flora. As the pace
of climate change increases and the forests’ ability to adapt is not a given, it is crucial to
enable the collection and evaluation of high spatial and temporal resolution data.

Vechtaer Moor, the bog where the current algorithm has been implemented, is home
to ongoing restoration efforts through rewetting (Raabe et al., 2018). The detection of
microforms, such as hummocks and hollows, is an important aspect of bogs’ monitoring.
The plant communities that form these features are on one hand crucial for the recovery
of the bogs to their natural state. And on the other hand they are extremely fragile, so
detecting them early on can facilitate quick measures aimed to enhance these plants’
circumstances. Mainly the water table can be promptly adjusted to optimize the well-
being of the target species. Moreover, the low-frequency DTM that was extracted could
help inform the decisions so as to maximize the measures’ effectiveness. Restoration
of degraded bogs is an essential aspect of climate change mitigation. That is because
functioning bogs act as moderate net carbon sinks, but due to the huge accumulation of
partially decayed organic matter, become important sources of greenhouse gases.

Summarizing, the present work combined know-how across a broad array of technical
topics, varying from fundamental linear algebra to advanced mechatronics and software
design to devise, build and test a UAV-borne lidar. The system has been used in two con-
trasting scenarios. The algorithms developed for the two use-cases have the potential to
support important renaturation and conservation efforts directed at threatened ecosys-
tems. Further work will surely be necessary to achieve actionable outcomes for either of
the applications, but the intermediate results are encouraging.
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A. SCHEMATIC DIAGRAMS
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B. LIDAR COVERAGE VS DISTANCE

The current Section claims that, all other things being equal, the chance to hit a point with
a lidar pulse increases roughly linearly with flying altitude. One’s first instinct might be
that because the spacing between lidar pulses increases with height, therefore lowering
the pulse density, the above statement should be false. However laser pulses are not
simply points, they have a non-zero width (w) and height (h), both of which increase with
distance. And as it turns out, the area covered by laser pulses increases quadratically,
while the point density decreases only linearly.

Consider the following scenario: a lidar unit that emits laser pulses at the rate of fpulse is
being moved in a straight line with constant speed v and we measure the area covered
by all of its pulses Atotal = ∑Apulse at a distance R. By comparing Atotal to the area of a
cylinder of radius R (Acyl), we can make statements about the chance of points on the
cylinder’s surface to be hit by a laser pulse.

The area of a single pulse at a distance R can be calculated as Apulse = (w0 +Rcw)(h0 +Rch),
where cw and ch are constants describing the beam divergence in the cross-track and
along-track directions respectively. The above can be simplified as Apulse ≈ RcwRch when
R is sufficiently large that the initial footprint size does not matter. In the case of the puck,
the initial dimensions can be safely ignored from about R ≈ 10 m. So the area of a single
pulse becomes Apulse ≈ R2cwch. For a given interval t, the lidar emits N = fpulset pulses.
So the total area covered by laser pulses becomes Atotal ≈ fpulsetR2cwch. For the same
interval, the lidar moves a distance of l = vt metres. So the area of the cylinder to be
considered becomes Acyl = 2πRl = 2πRvt. The ratio of the areas (η) becomes:

η ≈ Atotal

Acyl
=
fpulse �tR�2cwch

2π��Rv �t
(B.1)

η ≈
fpulsecwch

2πv
R (B.2)

Plugging in the numbers for the puck (fpulse = 3 × 105, cw = 3.0 × 10−3, ch = 1.6 × 10−3)
and a flying speed v = 5.0 m/s, the following η are obtained for R = 20 and R = 100 m
respectively:

η20m ≈ 0.92 η100m ≈ 4.59 (B.3)

Thus it is shown that at a flying height of 100 m, points on ground fairly close to the
imaginary cylinder surface are hit on average by 4.6 pulses, vs only 0.9 pulses when
flying at 20 m.
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C. MISCELLANEOUS

C.1. NMEA SENTENCES

“NMEA” refers to NMEA0183: a specification of data formats and electrical interfaces to
be used in marine electronics. The standard has been developed by the National Ma-
rine Electronics Association. It has since been broadly adopted by GNSS-receivers even
outside the field of marine navigation. In the current work, all mentions of “NMEA” refer
distinctively to the data specification. The standard itself is proprietary and costs upwards
of 1000 USD (NMEA, 2021), however GNSS manufacturers (Trimble, n.d.) and other par-
ties (Raymond, 2021) publish information that is sufficient for decoding and understanding
NMEA messages. The following shortly explains their structure.

NMEA sentences are a class of messages generated by GNSS receivers. Besides the
position and time solution obtained by the receiver, they can contain a myriad of other
information, varying from current datum to position error statistics. The NMEA sentences
are essentially text strings which follow a clearly defined structure: they always begin
with a dollar sign or an exclamation mark, contain a variable number of fields delimited
by commas, and end with five characters: an asterisk, a two-character checksum and
CRLF.56 The first field always contains five capital letters: two for talker-ID, meaning the
satellite constellation used, and three for message type. Usual talker-IDs are GP/GL
(when only GPS or GLONASS is used) and GN (GNSS, when at least two constellations
are used). The message type determines the number and expected content of fields in
the rest of the sentence. For instance, a message of type “ROT” contains two fields: rate
of turn in degrees/minute and a data valid indicator, while an “RMC” message contains
ten fields conveying information about position, velocity and time.

56CR refers to “carriage return” and LF to “line feed”—control codes in ASCII which essentially mean “go
to the beginning of the line” and “advance to next line”. They are used together or separately to delimit lines
in text files.
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